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ABSTRACT

A new efficient algorithm for computing a parametric greatest
common divisor (GCD) of parametric multivariate polyno-
mials over 𝑘[�⃗�][�⃗�] is presented. The algorithm is based on a
well-known simple insight that the GCD of two multivari-
ate polynomials (non-parametric as well as parametric) can
be extracted using the generator of the quotient ideal of a
polynomial with respect to the second polynomial. And, fur-
ther, this generator can be obtained by computing a minimal
Gröbner basis of the quotient ideal. The main attraction
of this idea is that it generalizes to the parametric case for
which a comprehensive Gröbner basis is constructed for the
parametric quotient ideal. It is proved that in a minimal
comprehensive Gröbner system of a parametric quotient ide-
al, each branch of specializations corresponds to a principal
parametric ideal with a single generator. Using this generator,
the parametric GCD of that branch is obtained by division.
This algorithm does not need to consider whether parametric
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polynomials are primitive w.r.t. the main variable. This is
in sharp contrast to two algorithms recently proposed by
Nagasaka (ISSAC, 2017). The resulting algorithm is not only
conceptually simple to understand but is considerably efficien-
t. The proposed algorithm and both of Nagasaka’s algorithms
have been implemented in Singular, and their performance
is compared on a number of examples. For more than two
polynomials, this process can be repeated by considering
pairs of polynomials; the efficiency in that case becomes even
more evident.
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1 INTRODUCTION

Multivariate polynomial GCD computation is one of the most
important operations in computer algebra as it is used in
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many algorithms and applications. The problem has been
extensively investigated and numerous algorithms have been
developed to compute the GCD efficiently beyond Euclid’s
algorithm using division for univariate polynomials and its
extension to multivariate polynomials using pseudo-division.
Brown’s modular GCD algorithm from [3] was the first GCD
algorithm that avoided intermediate expression swell. For
sparse polynomials Moses and Yun in [14] developed the EZ
GCD algorithm which is based on Hensel lifting. Zippel’s
sparse modular GCD algorithm [21] uses sparse interpolation.
It is currently used in Maple, Magma, and Mathematica. We
mention also algorithms of Gianni et al. [7] and Sasaki et al.
[18] which compute a GCD from a Gröbner basis. For sparse
multivariate polynomials, Sanuki et al. [17] utilized Extended
Hensel Construction to compute GCD and found that their
algorithm to be comparable in performance to Maple’s GCD
routine.

Using the concept of parametric polynomials, there have
also been many publications studying how to compute the
GCD of parametric polynomials. Abramov and Kvashenko
[1] used the subresultant chain to compute a parametric uni-
variate polynomial GCD. Ayad [2] presented three algorithms
based on parametrization of the Gaussian elimination proce-
dure to compute GCD of a finite set of parametric univariate
polynomials. At ISSAC 2017, Nagasaka [16] extended the
ideas of Gianni and Trager [7] as well as Sasaki et al. [18]
to polynomials with parameters for computing the GCD of
parametric multivariate polynomials. The main tool used in
Nagasaka’s algorithms is the comprehensive Gröbner system
which is the parametric extension of Gröbner basis, intro-
duced by Weispfenning [20] (and independently by [8] as
parametric Gröbner basis) and was improved by Suzuki et al.
[19], Kapur et al. [9, 10] and Nabeshima [15]. In Nagasaka’s
paper, the algorithms to compute the GCD of parametric mul-
tivariate polynomials need to consider whether parametric
polynomials are primitive w.r.t. 𝑥1 under different parametric
constraints. Moreover, he had to construct an ideal that is
maximal for any specialization based on extending Gianni
and Trager’s results [7]. Both of these steps in his algorithms
can be extremely time consuming.

This paper presents a new efficient algorithm for the GCD
computation of parametric multivariate polynomials. The
main idea of the new algorithm comes from computing a
minimal Gröbner basis of a non-parametric colon ideal of
two polynomials in the nonparametric case. Let 𝑘 be a field,
𝑘[�⃗�] be the polynomial ring in the variables �⃗� = {𝑥1, . . . , 𝑥𝑛}.
Assume that 𝑓 and 𝑔 are two nonzero polynomials in 𝑘[�⃗�].
It is easy to see that the minimal Gröbner basis of the quo-
tient ideal ⟨𝑓⟩ : 𝑔 has only one polynomial ℎ. Then, the

GCD of 𝑓 and 𝑔 is 𝑓
ℎ
. Most importantly, this construction

extends to the case of parametric polynomials in which a
Gröbner basis computation of the quotient ideal is replaced
by comprehensive Gröbner system construction for paramet-
ric polynomials. To compute the GCD of more than two
parametric polynomials, the above method is repeated much
as in the case of computing the GCD of a family of numbers.

Compared with Nagasaka’s algorithms, the new algorithm
has two advantages: there is no need to check whether para-
metric polynomials are primitive w.r.t. 𝑥1 in each iteration,
and further, it is guaranteed that a parametric polynomial 𝑓
is divisible by the result in the quotient ideal.These merits
make the proposed algorithm more efficient.

This paper is organized as follows. In Section 2, we provide
background about the GCD and the comprehensive Gröbner
computations for parametric multivariate polynomials. Na-
gasaka’s algorithms are reviewed in Section 3. The proposed
algorithm is presented in Section 4. To provide intuition and
make the presentation simple, we first briefly discuss how the
GCD of non-parametric polynomials can be computed using a
minimal Gröbner basis of a quotient ideal. This is followed by
extending this method to parametric polynomials. The new
algorithm is presented. In Section 5, a non-trivial example is
given to illustrate the key steps of the proposed algorithm.
This is followed by some remarks about computing the GCD
of a system of parametric polynomials in Section 6. Experi-
mental data and a comparison with Nagasaka’s algorithms
are presented in Section 7. We end with some concluding
remarks in Section 8.

2 PRELIMINARIES

Let 𝑘 be a number field, 𝑘 be the algebraic closure of 𝑘, 𝑘[�⃗�]
be the polynomial ring in the variables �⃗� = {𝑥1, . . . , 𝑥𝑛},
𝑘[�⃗�] be the parametric polynomial ring in the parameters
�⃗� = {𝑢1, . . . , 𝑢𝑚}, and 𝑘[�⃗�][�⃗�] be the polynomial ring over
the parameter ring 𝑘[�⃗�] in �⃗�. It is assumed that �⃗� ∩ �⃗� = ∅,
i.e., �⃗� and �⃗� are disjoint sets. In some cases, we abbreviate
{𝑥𝑖, 𝑥𝑖+1, . . . , 𝑥𝑛} to �⃗�𝑖 (2 ≤ 𝑖 ≤ 𝑛).

We introduce some notation and definitions for non para-
metric multivariate polynomials. Two polynomials 𝑓(�⃗�),
𝑔(�⃗�) ∈ 𝑘[�⃗�] are associates if ∃𝑐 ∈ 𝑘 such that 𝑓(�⃗�) = 𝑐 𝑔(�⃗�);
we denote this equivalence relation by 𝑓(�⃗�) ∼ 𝑔(�⃗�). For a
polynomial 𝑓 ∈ 𝑘[�⃗�], the leading term, leading coefficient,
leading monomial and the total degree of 𝑓 w.r.t. a mono-
mial order ≺ are denoted by lt(𝑓), lc(𝑓), lm(𝑓) and tdeg(𝑓)
respectively. We have lt(𝑓) = lc(𝑓) · lm(𝑓). The ideal in 𝑘[�⃗�],
generated by 𝑓1, . . . , 𝑓𝑠, is denoted by ⟨𝑓1, . . . , 𝑓𝑠⟩.

Definition 2.1. Let 𝑓1, . . . , 𝑓𝑠 ∈ 𝑘[�⃗�]. Then ℎ ∈ 𝑘[�⃗�] is
called a greatest common divisor (GCD) of 𝑓1, . . . , 𝑓𝑠,
denoted ℎ = gcd(𝑓1, . . . , 𝑓𝑠), if

(1) ∀𝑖 (1 ≤ 𝑖 ≤ 𝑠), ℎ divides 𝑓𝑖 and
(2) if 𝑔 is any polynomial which divides 𝑓1, . . . , 𝑓𝑠, then 𝑔

divides ℎ.

Particularly, we define gcd(𝑓1, . . . , 𝑓𝑠) = gcd(𝑓2, . . . , 𝑓𝑠) if
𝑓1 = 0, and gcd(0, 0) = 0, for convenience.

A GCD of polynomials is defined modulo associates. For
any given polynomials 𝑓1, . . . , 𝑓𝑠 ∈ 𝑘[�⃗�], there exist 𝑓1, . . . , 𝑓𝑠 ∈
𝑘[�⃗�] such that

𝑓𝑖 = gcd(𝑓1, . . . , 𝑓𝑠) · 𝑓𝑖, (1 ≤ 𝑖 ≤ 𝑠)

then 𝑓1, . . . , 𝑓𝑠 are called the cofactors of 𝑓1, . . . , 𝑓𝑠.



Definition 2.2. Let 𝑓 ∈ 𝑘[�⃗�]. 𝑓 is said to be primitive w.r.t.
𝑥1 if it is primitive as a polynomial in 𝑘[�⃗�2][𝑥1], that is, its
coefficients in 𝑘[�⃗�2] are co-prime.

Definition 2.3. Let 𝑔 be a nonzero multivariate polynomial
and 𝐼 is an ideal in 𝑘[�⃗�]. The set

𝐼 : 𝑔 = {𝑓 ∈ 𝑘[�⃗�] : 𝑓𝑔 ∈ 𝐼}

is called the quotient ideal (or colon ideal) of 𝐼 divided
by 𝑔.

For example, in 𝑘[𝑥1, 𝑥2, 𝑥3] we have ⟨𝑥1𝑥3, 𝑥2𝑥3⟩ : 𝑥3 =
{𝑓 ∈ 𝑘[𝑥1, 𝑥2, 𝑥3] : 𝑥3𝑓 ∈ ⟨𝑥1𝑥3, 𝑥2𝑥3⟩} = {𝑓 ∈ 𝑘[𝑥1, 𝑥2, 𝑥3] :
𝑥3𝑓 = 𝐴𝑥1𝑥3 + 𝐵𝑥2𝑥3} = {𝑓 ∈ 𝑘[𝑥1, 𝑥2, 𝑥3] : 𝑓 = 𝐴𝑥1 +
𝐵𝑥2} = ⟨𝑥1, 𝑥2⟩, where 𝐴,𝐵 ∈ 𝑘[𝑥1, 𝑥2, 𝑥3].

Definition 2.4. A minimal Gröbner basis for a polyno-
mial ideal 𝐼 ⊆ 𝑘[�⃗�] is a Gröbner basis 𝐺 for 𝐼 such that:

(1) lc(𝑝) = 1 for all 𝑝 ∈ 𝐺;
(2) lm(𝑝) /∈ ⟨lm(𝐺− {𝑝})⟩ for all 𝑝 ∈ 𝐺.

Next we introduce some notation and definitions for para-
metric multivariate polynomials. For a polynomial 𝑔 ∈ 𝑘[�⃗�][�⃗�],
the leading term, leading coefficient, leading monomial and
total degree of 𝑔 w.r.t. the monomial order ≺�⃗� are denoted by
lt�⃗�(𝑔), lc�⃗�(𝑔), lm�⃗�(𝑔) and tdeg�⃗�(𝑔) respectively. If 𝑔 ∈ 𝑘[�⃗�]
or 𝑔 ∈ 𝑘[�⃗�][�⃗�], we use lc𝑥𝑖(𝑔) to denote the leading coefficient
of 𝑔 w.r.t. 𝑥𝑖.

A specialization of 𝑘[�⃗�] is a homomorphism 𝜎 : 𝑘[�⃗�] → 𝑘.
In this paper, we only consider the specializations induced
by the elements in 𝑘𝑚. That is, for �⃗� ∈ 𝑘𝑚, the induced
specialization 𝜎�⃗� is defined as

𝜎�⃗� : 𝜙 → 𝜙(⃗𝑎),

where 𝜙 ∈ 𝑘[�⃗�]. Every specialization 𝜎: 𝑘[�⃗�] → 𝑘 extends
canonically to a specialization 𝜎: 𝑘[�⃗�][�⃗�] → 𝑘[�⃗�] by applying
𝜎 coefficient-wise.

For an ideal 𝐸 ⊂ 𝑘[�⃗�], the variety defined by 𝐸 in 𝑘𝑚 is
denoted by V(𝐸) = {�⃗� ∈ 𝑘𝑚 | 𝑓 (⃗𝑎) = 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑓 ∈ 𝐸}. In
this paper, an algebraically constructible set 𝐴 always
has the form: 𝐴 = V(𝐸) ∖V(𝑁), where 𝐸,𝑁 are ideals in
𝑘[�⃗�]. It is easy to see that the algebraically constructible
set 𝐴 is not empty by ensuring that at least one 𝑓 ∈ 𝑁
is not in the radical of 𝐸. Let 𝑉 ⊂ 𝑘𝑚 be a variety. Let
I(𝑉 ) = {𝑓 ∈ 𝑘[�⃗�] | 𝑓 (⃗𝑎) = 0 𝑓𝑜𝑟 𝑎𝑙𝑙 �⃗� ∈ 𝑉 }. According to
Corollary 3 ([4], page 176), I(𝑉 ) is a radical ideal.

For a parametric polynomial system, the comprehensive
Gröbner system and minimal comprehensive Gröbner system
are given below.

Definition 2.5. Let 𝐹 be a set in 𝑘[�⃗�][�⃗�], 𝐴1, . . . , 𝐴𝑙 be al-
gebraically constructible subsets of 𝑘𝑚, 𝐺1, . . . , 𝐺𝑙 be subsets
of 𝑘[�⃗�][�⃗�], and 𝑆 be a subset of 𝑘𝑚 such that 𝑆 ⊂ 𝐴1∪· · ·∪𝐴𝑙.
A finite set 𝒢 = {(𝐴1, 𝐺1), . . . , (𝐴𝑙, 𝐺𝑙)} is called a compre-
hensive Gröbner system (CGS) on 𝑆 for 𝐹 if 𝜎�⃗�(𝐺𝑖) is a
Gröbner basis for for the ideal ⟨𝜎�⃗�(𝐹 )⟩ ⊂ 𝑘[�⃗�] for �⃗� ∈ 𝐴𝑖 and
𝑖 = 1, . . . , 𝑙. Each (𝐴𝑖, 𝐺𝑖) is called a branch of 𝒢. In partic-
ular, if 𝑆 = 𝑘𝑚, then 𝒢 is called a comprehensive Gröbner
system for 𝐹 .

Definition 2.6. A comprehensive Gröbner system 𝒢 =
{(𝐴1, 𝐺1), . . . , (𝐴𝑙, 𝐺𝑙)} on 𝑆 for 𝐹 is said to be minimal,
if for every 𝑖 = 1, . . . , 𝑙,

(1) 𝐴𝑖 ̸= ∅, and furthermore, for each 𝑗 = 1, . . . , 𝑙, 𝐴𝑖 ∩
𝐴𝑗 = ∅ whenever 𝑖 ̸= 𝑗;

(2) 𝜎�⃗�(𝐺𝑖) is a minimal Gröbner basis for ⟨𝜎�⃗�(𝐹 )⟩ ⊂ 𝑘[�⃗�]
for �⃗� ∈ 𝐴𝑖;

(3) for each 𝑔 ∈ 𝐺𝑖, 𝜎�⃗�(lc�⃗�(𝑔)) ̸= 0 for any �⃗� ∈ 𝐴𝑖.

Abramov and Kvashenko [1] studied the parametric GCD
of univariate polynomials with one parameter. The definition
of parametric GCD (one parameter) can be easily extended
to the case 𝑚 (𝑚 ≥ 1).

Definition 2.7. For 𝐹 = {𝑓1, . . . , 𝑓𝑠} ⊂ 𝑘[�⃗�][�⃗�] and 𝑆 ⊂
𝑘𝑚, we call {(𝐴1, 𝑔1), . . . , (𝐴𝑟, 𝑔𝑟)} a parametric GCD of
𝐹 on 𝑆, if for every 𝑖 = 1, . . . , 𝑟, 𝜎�⃗�(𝑔𝑖) is a GCD of 𝜎�⃗�(𝐹 )
for any specialization �⃗� ∈ 𝐴𝑖, where 𝐴1, . . . , 𝐴𝑟 ⊂ 𝑘𝑚 are
algebraically constructible sets and 𝑆 = ∪𝑟

𝑖=1𝐴𝑖, 𝑔1, . . . , 𝑔𝑟 ∈
𝑘[�⃗�][�⃗�]. If 𝑆 = 𝑘𝑚, we simply call it a parametric GCD of 𝐹 .

3 NAGASAKA’S ALGORITHMS

As stated in the introduction, the GCD of polynomials have
been extensively studied in the literature because of the
enormous importance of this operation in many symbolic
computation algorithms and applications; see [3, 14, 21] for
instance. The main issue in the GCD computation is that of
intermediate expression swell as analyzed in Knuth vol. 2.

Gianni et al. [7] and Sasaki et al. [18] studied the GCD
of polynomials by computing a Gröbner basis instead of
using the Euclidean algorithm. Nagasaka [16] extended their
results to polynomials with parameters and proposed two
algorithms to compute the parametric GCD of parametric
polynomials. In the following, we provide an overview of
Nagasaka’s algorithms and illustrate their shortcomings; more
details about the algorithms can be found in [16].

3.1 Extending Gianni and Trager’s
Algorithm

Nagasaka extended Proposition 2 in [7] to state:

Lemma 3.1. Let 𝑓1, . . . , 𝑓𝑠, 𝑔 ∈ 𝑘[�⃗�] be primitive w.r.t. 𝑥1,
𝐽 be a maximal ideal in 𝑘[�⃗�2] such that ⟨𝑓1, . . . , 𝑓𝑠, 𝐽⟩ ∋ 1
and ⟨lc𝑥1(𝑔𝑓𝑖), 𝐽⟩ ∋ 1 for some 𝑖. Let 𝐺 be a Gröbner basis
for ⟨𝑔𝑓1, . . . , 𝑔𝑓𝑠, 𝐽𝑟⟩ w.r.t. any total degree order. Then, the
polynomial 𝑔 in 𝐺 of least total degree is an associate of 𝑔
if the least total degree of the elements in 𝐽𝑟 is larger than
tdeg(𝑔)2.

Nagasaka further extended Lemma 3.1 to the case of para-
metric polynomials for which additional conditions on the
ideal 𝐽 ⊂ 𝑘[�⃗�][�⃗�2] for each specialization �⃗� ∈ 𝑘𝑚 must be
satisfied:

(1) 𝜎�⃗�(𝑓1), . . . , 𝜎�⃗�(𝑓𝑠) are primitive w.r.t. 𝑥1;
(2) 𝜎�⃗�(𝐽) is a maximal ideal in 𝑘[�⃗�2];
(3) ⟨lc𝑥1(𝜎�⃗�(𝑓𝑖)), 𝜎�⃗�(𝐽)⟩ ∋ 1 for some 𝑖;
(4) ⟨𝑓1, . . . , 𝑓𝑠, 𝜎�⃗�(𝐽)⟩ ∋ 1, where each 𝑓𝑖 ∈ 𝑘[�⃗�] is the

cofactor of 𝜎�⃗�(𝑓𝑖).



To satisfy these conditions, the parametric space 𝑘𝑚 needs
to be decomposed into branches such that 𝐹 and each 𝐽 have
the following properties.

Definition 3.2. For the given 𝐹 = {𝑓1, . . . , 𝑓𝑠} ⊂ 𝑘[�⃗�][�⃗�]
with 𝑆 ⊂ 𝑘𝑚 and 𝐽 ⊂ 𝑘[�⃗�][�⃗�2], we introduce the following.

(1) 𝐹 is said to be 𝑆-primitive if for any specialization
�⃗� ∈ 𝑆, 𝜎�⃗�(𝑓1), . . . , 𝜎�⃗�(𝑓𝑠) are primitive w.r.t. 𝑥1;

(2) 𝐽 is said to be 𝑆-maximal if for any specialization
�⃗� ∈ 𝑆, 𝜎�⃗�(𝐽) is a maximal ideal in 𝑘[�⃗�2];

(3) 𝐹 is said to be 𝑆-nonvanishlc if for any specialization
�⃗� ∈ 𝑆, lc𝑥1(𝜎�⃗�(𝑓𝑖)) = 𝜎�⃗�(lc𝑥1(𝑓𝑖)) for each 𝑖;

(4) 𝐹 is said to be 𝑆-nondegenerate if for any special-
ization �⃗� ∈ 𝑆, ⟨lc𝑥1(𝜎�⃗�(𝑓𝑖)), 𝜎�⃗�(𝐽)⟩ ∋ 1 for some 𝑖;

(5) 𝐽 is said to be 𝑆-luckyprime if for any specialization
�⃗� ∈ 𝑆, ⟨𝑓1, . . . , 𝑓𝑠, 𝜎�⃗�(𝐽)⟩ ∋ 1, where each 𝑓𝑖 ∈ 𝑘[�⃗�] is
the cofactor of 𝜎�⃗�(𝑓𝑖).

Under these conditions, Nagasaka proposed an algorithm
to compute the parametric GCD by combining Lemma 3.1
and Definition 3.2, which we call henceforth, the Nagasaka-
GT algorithm.

Step 1: compute the 𝑆-primitive part of 𝐹 w.r.t. 𝑥1;
Step 2: decompose 𝑆 such that 𝐹 is 𝑆-nonvanishlc;
Step 3: construct a maximal ideal 𝐽 ⊂ 𝑘[�⃗�2] such that 𝐹

is 𝑆-nondegenerate;
Step 4: compute a minimal CGS for ⟨𝐹 ∪ 𝐽𝑟⟩ on 𝑆, where

𝑟 satisfies the degree condition of Lemma 3.1;
Step 5: check whether 𝐽 is a 𝑆-luckyprime, if not, return

to the Step 3;
Step 6: obtain the parametric GCD of 𝐹 .

As the reader will notice, the above conditions are compli-
cated and not easy to appreciate. Further, while implement-
ing the Nagasaka-GT algorithm in Singular, we discovered
the following shortcomings. Without any loss of generali-
ty, we assume in the following examples that �⃗� = {𝑎, 𝑏},
�⃗� = {𝑥1, 𝑥2, 𝑥3} and 𝑆 = C and consider the lexicographic
order with 𝑥1 ≻ 𝑥2 ≻ 𝑥3.

(1) In Step 1, Nagasaka needs to call this algorithm repeat-
edly to compute the primitive part of each parametric
polynomial. For example, we want to compute the prim-
itive part of 𝑓 = (1− 𝑎)𝑥3

1𝑥
2
2 + 𝑎(𝑏− 1)𝑥3

1𝑥2𝑥3 + (𝑎2 −
𝑎)𝑥1𝑥

2
2 + (𝑎− 𝑏)𝑥1𝑥3 + (𝑎− 1)𝑥2

2 + 𝑎(𝑏− 1)𝑥2𝑥
3
3 + 𝑎𝑥3

w.r.t. 𝑥1 on C. We must know the parametric GCD
of coefficients of 𝑓 w.r.t. 𝑥1 on C, i.e., we have to
call this algorithm to compute the parametric GCD
of 𝑓11, 𝑓12, 𝑓13, where 𝑓11 = (1− 𝑎)𝑥2

2 + 𝑎(𝑏− 1)𝑥2𝑥3,
𝑓12 = (𝑎2 − 𝑎)𝑥2

2 + (𝑎 − 𝑏)𝑥3 and 𝑓13 = (𝑎 − 1)𝑥2
2 +

𝑎(𝑏− 1)𝑥2𝑥
3
3 + 𝑎𝑥3. As the number of variables increas-

es, this becomes more and more tedious, resulting in
computational inefficiency.

(2) Step 2 is not necessary. Step 1 has ensured that the
leading coefficient of 𝑓 w.r.t. 𝑥1 is not zero on each
branch 𝑆𝑗 , i.e, lc𝑥1(𝜎�⃗�(𝑓)) = 𝜎�⃗�(lc𝑥1(𝑓)) for any spe-
cialization �⃗� ∈ 𝑆𝑗 . Therefore, Step 2 can be removed.

(3) If the parameter space 𝑆 is divided into many small
areas, more and more maximal ideals need to be con-
structed in Step 3. Although Nagasaka proved that a
maximal ideal 𝐽 ⊂ 𝑘[𝑥2, 𝑥3] which is 𝑆-nondegenerate
and 𝑆-luckyprime can be constructed in a finite num-
ber of steps, we do not know how much time it takes
to construct so many maximal ideals.

(4) We need to estimate the value of 𝑟 in Step 4. Since 𝐽 =
⟨𝑥2 − 𝑐2, 𝑥3 − 𝑐3⟩ and we do not know the polynomial
𝑔 in Lemma 3.1, we often let 𝑟 := min{tdeg�⃗�(𝑓𝑖)2 +
1 | 𝑓𝑖 ∈ 𝐹}. For instance, let 𝐹 = {𝑓1, 𝑓2}, where
𝑓1 = 𝑎𝑥3

1𝑥
2
2𝑥3 + (1− 𝑏)(𝑥2

2 + 𝑥3), 𝑓2 = (1− 𝑎)𝑥3
1𝑥

2
2𝑥3 +

𝑏(𝑥2
2+𝑥3). Then, 𝑟 = 37. There are two problems: First,

it will take more time to compute the minimal CGS of
⟨𝐹 ∪𝐽37⟩ which sometimes does not terminate. Second,
since 𝑐2, 𝑐3 ∈ C are chosen randomly, sometimes 𝑐37𝑖 is
a large integer.

3.2 Extending Sasaki and Suzuki’s
Algorithm

Sasaki and Suzuki [18] also used a Gröbner basis construction
to compute the GCD of polynomials, by improving upon
Gianni and Trager’s results. They obtained a similar theorem,
but did not need to use a maximal ideal 𝐽 .

Theorem 3.3. (Theorem 1 in [18]) Let 𝑓1, 𝑓2 ∈ 𝑘[�⃗�] be
primitive w.r.t. 𝑥1, and 𝐺 be the Gröbner basis w.r.t. any
block order such that 𝑥1 ≻ �⃗�2 for ⟨𝑓1, 𝑓2⟩. Then, there exists
a polynomial ℎ ∈ 𝑘[�⃗�2] such that 𝑔 = ℎ · gcd(𝑓1, 𝑓2), where 𝑔
is the polynomial in 𝐺 of least degree in 𝑥1.

Using the insight in Theorem 3.3, Nagasaka proposed a
second algorithm (henceforth called, Nagasaka-SS algorithm).

Step 1: compute an 𝑆-primitive decomposition;
Step 2: compute a minimal CGS;
Step 3: compute a parametric GCD of coefficients of the

candidate factor;
Step 4: compute the primitive part in each branch.

There are similarities between the Nagasaka-SS algorithm
and Nagasaka-GT algorithm which are also sources of inef-
ficiency: both need to compute 𝑆-primitive decompositions
and make recursive calls to compute the parametric GCD of
coefficients of polynomials. The Nagasaka-SS algorithm has
been observed to be more efficient than the Nagasaka-GT
algorithm, since the Nagasaka-SS algorithm does not need to
construct many maximal ideals and only needs to compute
the minimal CGS of ⟨𝐹 ⟩ rather than ⟨𝐹 ∪ 𝐽𝑟⟩.

4 THE PROPOSED ALGORITHM

We propose a new algorithm for computing the GCD of t-
wo parametric multivariate polynomials. To present the key
ideas, we first give the algorithm for the non-parametric case
and then we extend it to the parametric case. The key idea is
well-known: compute the cofactor by computing the quotient
ideal of one polynomial with respect to the other polynomial.



This quotient ideal is known to be principal and has a sin-
gle generator which can be computed by a single minimal
Gröbner basis computation. This generator, which is the
cofactor of the first polynomial, is used to obtain the GCD by
dividing the polynomial by its cofactor. For the parametric
case, a minimal comprehensive Gröbner system of a module
is computed, leading to multiple branches for different spe-
cializations; for each branch, the generator is used to obtain
the GCD for the associated parametric specializations.

To experimentally compare the proposed algorithm with
both of Nagasaka’s algorithms, we have implemented them
all in Singular on a single platform so that their comparative
performance can be fairly analyzed (Section 7).

4.1 GCD for non-parametric polynomials

As stated above, there are many well-known algorithms for
computing the GCD of multivariate polynomials starting
from Euclid’s algorithm improved by Collins using reduced
polynomial remainder sequences (PRS), Brown and Traub
and Brown’s subresultant PRS with EZGCD algorithm in
MACSYMA for multivariate polynomials in general and Zip-
pel’s algorithm based on sparse interpolation which is more
efficient for sparse polynomials. There are also algorithm-
s based on Gröbner basis computations. We are, however,
interested in algorithms which generalize to parametric poly-
nomial systems. To our knowledge, algorithms based on the
Euclidean division algorithm (really pseudo-division in case
of multivariate polynomials) and hence, Gröbner bases are
most suited to generalize to parametric polynomial systems.

Theorem 4.1. Consider two polynomials 𝑓1, 𝑓2 ∈ 𝑘[�⃗�]∖{0}
such that 𝑓1 = 𝑑 · 𝑓1 and 𝑓2 = 𝑑 · 𝑓2, where 𝑑 = gcd(𝑓1, 𝑓2)
and gcd(𝑓1, 𝑓2) = 1. Then, ⟨𝑓1⟩ = ⟨𝑓1⟩ : 𝑓2, ⟨𝑓2⟩ = ⟨𝑓2⟩ : 𝑓1.

Theorem 4.1 implies that ⟨𝑓1⟩ : 𝑓2 is a principal ideal. A
minimal Gröbner basis 𝐺 of ⟨𝑓1⟩ : 𝑓2 w.r.t. a monomial order
≺ is {𝑔} such that gcd(𝑓1, 𝑓2) = 𝑓1/𝑔. Depending upon the
structure of 𝑓1, 𝑓2 and the degree of their GCD relative to
the degrees of 𝑓1, 𝑓2, computing ⟨𝑓1⟩ : 𝑓2 or ⟨𝑓2⟩ : 𝑓1 can
have varied performance.

A quotient ideal can be constructed using ideal intersection
[4] (pp.183–197) which involves introducing a new variable 𝑧
to construct a new ideal 𝐽 = ⟨𝑧𝑓1, (1− 𝑧)𝑓2⟩ ⊂ 𝑘[𝑧, �⃗�]. Given
that the complexity of Gröbner basis computations is heavily
influenced by the number of variables and the degrees of the
polynomials, we believe that computations over modules are
likely to be more efficient (Chapter 5, [5]).

Let e1 = (1, 0) and e2 = (0, 1). Then {e1, e2} is a free basis
of (𝑘[�⃗�])2. For any element �⃗� in (𝑘[�⃗�])2, it can be expressed as
�⃗� = ℎ1 ·e1+ℎ2 ·e2 where ℎ1, ℎ2 ∈ 𝑘[�⃗�]. For any submodule 𝑊
of (𝑘[�⃗�])2, we can also compute the Gröbner basis of 𝑊 . The
module case follows the ideal case almost exactly. However,
we need to extend the notion of monomial orders to the free
module (𝑘[�⃗�])2. Let ≺ be a monomial order on 𝑘[�⃗�], then
extend ≺ to the (𝑘[�⃗�])2 in a position over term fashion with
e2 < e1.

Theorem 4.2. Let 𝑓1, 𝑓2 be two polynomials in 𝑘[�⃗�] ∖ {0}
and ≺ be a monomial order on 𝑘[�⃗�]. Suppose 𝑊 ⊂ (𝑘[�⃗�])2 is
a 𝑘[�⃗�]-module generated by {𝑓1 · e1, 𝑓2 · e1 − e2} and 𝐺 is a
minimal Gröbner basis of 𝑊 w.r.t. an order extended from
≺ in a position over term fashion with e2 < e1. Then there
exists a unique polynomial 𝑔 ∈ 𝑘[�⃗�] ∖ {0} such that 𝑔 · e2 ∈ 𝐺
and ⟨𝑔⟩ = ⟨𝑓1⟩ : 𝑓2.

Proof. Let 𝐻 = {ℎ ∈ 𝑘[�⃗�] | ℎ · e2 ∈ 𝐺}. We prove
⟨𝐻⟩ = ⟨𝑓1⟩ : 𝑓2 below.

We first show ⟨𝑓1⟩ : 𝑓2 ⊂ ⟨𝐻⟩. For any given polynomial
𝑝 in ⟨𝑓1⟩ : 𝑓2, there exists a polynomial 𝑞 ∈ 𝑘[�⃗�] such that
𝑝𝑓2 = 𝑞𝑓1. Then, 𝑝 · e2 = 𝑞(𝑓1 · e1)− 𝑝(𝑓2 · e1 − e2) implies
𝑝 · e2 ∈ 𝑊 . Since 𝐺 is a minimal Gröbner basis of 𝑊 , it
follows that 𝑝 ∈ ⟨𝐻⟩.

For the converse, suppose ℎ ∈ ⟨𝐻⟩. Then there exist polyno-
mials 𝑔1, . . . , 𝑔𝑠, 𝑝1, . . . , 𝑝𝑠 ∈ 𝑘[�⃗�] such that ℎ =

∑︀𝑠
𝑖=1 (𝑝𝑖𝑔𝑖)

and 𝑔𝑖 · e2 ∈ 𝐺 for 1 ≤ 𝑖 ≤ 𝑠. Thus, we have ℎ · e2 ∈ ⟨𝐺⟩,
which implies ℎ · e2 = 𝐴(𝑓1 · e1) +𝐵(𝑓2 · e1 − e2) for some
polynomials 𝐴,𝐵 ∈ 𝑘[�⃗�]. From this equation we can obtain
the following equations.{︂

0 = 𝐴𝑓1 +𝐵𝑓2,
ℎ = −𝐵.

Therefore, we have ℎ ∈ ⟨𝑓1⟩ : 𝑓2.
In sum, we have ⟨𝐻⟩ = ⟨𝑓1⟩ : 𝑓2. By Theorem 4.1, we

obtain ⟨𝑓1⟩ = ⟨𝐻⟩, where 𝑓1 = 𝑑 · 𝑓1, 𝑓2 = 𝑑 · 𝑓2, and
𝑑 = gcd(𝑓1, 𝑓2). As 𝑓1 and 𝑓2 are both nonzero by assumption,
⟨𝐻⟩ is not empty and is a principal ideal. Besides, 𝐺 is a
Gröbner basis of 𝑊 , there must exist a polynomial 𝑔 ∈
𝑘[�⃗�] ∖ {0} such that 𝑔 ·e2 ∈ 𝐺 and lm(𝑔) = lm(𝑓1). Moreover,
we have 𝑔 = 𝑓1 as 𝐺 is minimal, because otherwise there
should exist another polynomial in 𝐺 that divides (𝑔−𝑓1) ·e2

and has a smaller leading monomial than lm(𝑔). �

Theorem 4.1 only discusses the case when 𝑓1 and 𝑓2 are
both nonzero polynomials. We can extend the result to more
general cases.

Corollary 4.3. Let 𝑓1, 𝑓2 be two polynomials in 𝑘[�⃗�] and
≺ be a monomial order on 𝑘[�⃗�]. Suppose 𝑊 ⊂ (𝑘[�⃗�])2 is
a 𝑘[�⃗�]-module generated by {𝑓1 · e1, 𝑓2 · e1 − e2} and 𝐺 is
a minimal Gröbner basis for 𝑊 w.r.t. an order extended
from ≺ in a position over term fashion with e2 < e1. Let
𝐻 = {ℎ ∈ 𝑘[�⃗�] | ℎ · e2 ∈ 𝐺}. Then
(1) If 𝐻 is empty, then 𝑓1 = 0 and 𝑓2 ̸= 0. In this case,

gcd(𝑓1, 𝑓2) = 𝑓2.
(2) If 𝐻 is not empty, then 𝐻 = {𝑔} and gcd(𝑓1, 𝑓2) =

𝑓1/𝑔.

Proof. If 𝑓1 = 0, 𝑓2 ̸= 0, then 𝐻 can be checked to be
empty. If 𝑓1 = 𝑓2 = 0, then 𝐻 = {1}. If 𝑓1 ̸= 0 and 𝑓2 = 0,
then 𝐻 = {1} and gcd(𝑓1, 𝑓2) = 𝑓1. In the case of 𝑓1 and 𝑓2
being nonzero, the result follows Theorem 4.2. �

By Corollary 4.3, the GCD of 𝑓1 and 𝑓2 can be obtained
from the Gröbner basis 𝐺 directly without any knowledge of
𝑓1 or 𝑓2 being zero or not.



4.2 GCD for parametric polynomials

The nice thing about using quotient ideals for computing the
GCD is that Corollary 4.3 generalizes easily to the parametric
case.

Theorem 4.4. Given 𝑓1, 𝑓2 ∈ 𝑘[�⃗�][�⃗�] and an algebraical-
ly constructible set 𝐴 = V(𝐸) ∖ V(𝑁) ⊂ 𝑘𝑚, let 𝒢 =
{(𝐴𝑖, 𝐺𝑖)}𝑙𝑖=1 be a minimal comprehensive Gröbner system
of the module 𝑊 = ⟨𝑓1·e1, 𝑓2·e1−e2⟩ on 𝐴 w.r.t. an order ex-
tended from ≺�⃗� in a position over term fashion with e2 < e1.
For each branch (𝐴𝑖, 𝐺𝑖) let 𝐻𝑖 = {ℎ ∈ 𝑘[�⃗�][�⃗�] | ℎ · e2 ∈ 𝐺𝑖}.
Then we have the following results.

(1) If 𝐻𝑖 is empty, then gcd(𝜎�⃗�(𝑓1), 𝜎�⃗�(𝑓2)) = 𝜎�⃗�(𝑓2) for
any �⃗� ∈ 𝐴𝑖.

(2) If 𝐻𝑖 is not empty, then 𝐻𝑖 = {𝑔𝑖} and gcd(𝜎�⃗�(𝑓1),

𝜎�⃗�(𝑓2)) =
𝜎�⃗�(𝑓1)
𝜎�⃗�(𝑔𝑖)

for any �⃗� ∈ 𝐴𝑖.

Proof. Since 𝒢 is a minimal comprehensive Gröbner
system, in each branch (𝐴𝑖, 𝐺𝑖), the set 𝜎�⃗�(𝐺𝑖) is a minimal
Gröbner basis for any �⃗� ∈ 𝐴𝑖. Besides, there is no polynomial
𝐺𝑖 specializes to 0 because the leading coefficients of all
polynomials in 𝐺𝑖 are nonzero under specialization. �

Note that in Theorem 4.4 (2), the expression 𝜎�⃗�(𝑓1)
𝜎�⃗�(𝑔𝑖)

is

a polynomial in 𝑘[�⃗�] for any �⃗� ∈ 𝐴𝑖, but the expression
𝑓1/𝑔𝑖 is not necessarily a polynomial in 𝑘[�⃗�][�⃗�]. However,
using pseudo-division of 𝑓1 by 𝑔𝑖 since lc�⃗�(𝑔𝑖) is a nonzero
polynomial in 𝑘[�⃗�] that does not vanish for any 𝜎 in the

branch, an associate of 𝜎�⃗�(𝑓1)
𝜎�⃗�(𝑔𝑖)

is computed.

To compute 𝑞 ∈ 𝑘[�⃗�][�⃗�] such that 𝜎�⃗�(𝑞) ∼ 𝜎�⃗�(𝑓1/𝑔𝑖) =
𝜎�⃗�(𝑓1)/𝜎�⃗�(𝑔𝑖), 𝑓1 is multiplied by lc�⃗�(𝑔𝑖) repeatedly during
pseudo-division so that

(lc�⃗�(𝑔𝑖))
𝑘𝑓1 = 𝑞 · 𝑔𝑖 + 𝑟,

and no term in 𝑟 is divisible by the leading term lm�⃗�(𝑔𝑖).
We use a simple example to illustrate this. Let 𝑓 = 𝑥2 −

𝑏𝑦 + 𝑏, 𝑔 = 𝑎𝑥 with 𝑞 = Quo(𝑓, 𝑔) and an algebraically
constructible set 𝐴 = V(⟨𝑎𝑏⟩)∖V(⟨𝑎⟩). Using a lexicographic
order on �⃗�, where �⃗� = {𝑥, 𝑦} and 𝑥 > 𝑦, 𝑔 pseudo-divides 𝑓
in 𝑘[�⃗�][�⃗�], giving lc�⃗�(𝑔) · 𝑓 = 𝑥 · 𝑔 + 𝑟, where 𝑟 = −𝑎𝑏𝑦 + 𝑎𝑏.
It is obvious that 𝑟 is zero on 𝐴. Thus 𝑞 = 𝑥. Moreover, for

any �⃗� ∈ 𝐴, 𝜎�⃗�(𝑓)
𝜎�⃗�(𝑔)

= 1
𝑎
𝑥. Therefore, 𝜎�⃗�(𝑞) ∼ 𝜎�⃗�(𝑓)/𝜎�⃗�(𝑔).

This operation is similar to the pseudo-division algorithm in
[12, 13].

4.3 Algorithm

Now, we propose the main algorithm in this paper to compute
the parametric GCD of parametric multivariate polynomials.
This algorithm is called the parametric GCD algorithm.

Proposition 4.5. The parametric GCD algorithm works
correctly.

Proof. The proof follows directly from Theorem 4.4. �

In the parametric GCD algorithm, if 𝑓1 (or 𝑓2) vanishes on
the constructible set 𝐴, we only need to compute a minimal

Algorithm 1: parametric GCD algorithm

Input : 𝑓1, 𝑓2 ∈ 𝑘[�⃗�][�⃗�], a constructible set 𝐴 ⊂ 𝑘𝑚,
and two monomial orders ≺�⃗�,≺�⃗�.

Output : a comprehensive GCD: {(𝐴𝑗 , ℎ𝑗)}𝑠𝑗=1, where
ℎ𝑖 = gcd(𝑓1, 𝑓2) under any specialization from
𝐴𝑗 and ∪𝑠

𝑗=1𝐴𝑗 = 𝐴.

1 begin
2 compute a comprehensive Gröbner system

{(𝐴𝑖, 𝐺𝑖)}𝑠𝑖=1 for the module ⟨𝑓1 · e1, 𝑓2 · e1 − e2⟩.
3 let 𝑖 = 1.

4 while 𝑖 ≤ 𝑠 do

5 let 𝐻𝑖 = {ℎ ∈ 𝑘[�⃗�][�⃗�] | ℎ · e2 ∈ 𝐺𝑖}.
6 if 𝐻𝑖 is empty then

7 ℎ𝑖 = 𝑓2 on 𝐴𝑖;

8 else

9 𝐻𝑖 has exactly one polynomial, say 𝑔𝑖; and

10 ℎ𝑖 = Quo(𝑓1, 𝑔𝑖) on 𝐴𝑖.

11 end if

12 let 𝑖 = 𝑖+ 1.

13 end while

14 return return {(𝐴𝑗 , ℎ𝑗)}𝑠𝑗=1.

15 end

comprehensive Gröbner system {(𝐴𝑗 , ℎ𝑗)}𝑠𝑗=1 of 𝑓2 (or 𝑓1),
and then the GCD of 𝑓1 and 𝑓2 on each branch 𝐴𝑗 is ℎ𝑗 .

We can compute the parametric GCD recursively if the
number of polynomials is bigger than two.

5 AN ILLUSTRATIVE EXAMPLE

We illustrate the algorithm with a simple example. Let
𝑓1, 𝑓2, 𝑓3 ∈ C[�⃗�][�⃗�] be as follows:

𝑓1 = 𝑎𝑥2 + 𝑏𝑥𝑦 + 𝑎2𝑥𝑧 + 𝑎𝑏𝑥+ 𝑎𝑏𝑦𝑧 + 𝑏2𝑦,
𝑓2 = 𝑎𝑥2 + 𝑏𝑥𝑦 + (𝑎𝑏− 𝑎)𝑥𝑧 − 𝑎2𝑥+ (𝑏2 − 𝑏)𝑦𝑧 − 𝑎𝑏𝑦,
𝑓3 = 𝑎𝑥2 + 𝑏𝑥𝑦 + 𝑎2𝑥𝑧 + (𝑎2 − 𝑎𝑏)𝑥+ 𝑎𝑏𝑦𝑧 + (𝑎𝑏− 𝑏2)𝑦,

where �⃗� = {𝑎, 𝑏}, �⃗� = {𝑥, 𝑦, 𝑧}, ≺�⃗� and ≺�⃗� are all lexico-
graphic orders with 𝑧 < 𝑦 < 𝑥 and 𝑏 < 𝑎, respectively.

We first compute a minimal CGS 𝒢0 of ⟨𝑓1 · e1, 𝑓2 · e1 −
e2⟩. There are six branches in 𝒢0. The first branch of 𝒢0 is
(𝐴1, 𝐺0) = (V(⟨0⟩)∖V(⟨𝑎3−𝑎2𝑏+𝑎2⟩), {(𝑥+𝑎𝑧+𝑏)·e2, ((𝑎

2−
𝑎𝑏+𝑎)𝑥𝑧+(𝑎2+𝑎𝑏)𝑥+(𝑎𝑏−𝑏2+𝑏)𝑦𝑧+(𝑎𝑏+𝑏2)𝑦)·e1+e2, 𝑓1 ·
e1}). Then, 𝐻0 = {𝑥+𝑎𝑧+𝑏 ∈ C[�⃗�][�⃗�] | (𝑥+𝑎𝑧+𝑏)·e2 ∈ 𝐺1}
and the GCD of 𝑓1 and 𝑓2 on 𝐴1 is ℎ1 = 𝑓1/(𝑥+ 𝑎𝑧 + 𝑏) =
𝑎𝑥 + 𝑏𝑦. Similarly, the GCDs on other five branches are:
(𝐴2, ℎ2) = (V(⟨𝑎− 𝑏+ 1⟩) ∖V(⟨2𝑏2 − 3𝑏+ 1⟩), (𝑏− 1)𝑥+ 𝑏𝑦),
(𝐴3, ℎ3) = (V(⟨𝑎, 𝑏− 1⟩), 𝑦), (𝐴4, ℎ4) = (V(⟨2𝑎+1, 2𝑏− 1⟩) ∖
V(⟨𝑏− 1⟩),− 1

2
𝑥2 + 1

2
𝑥𝑦+ 1

4
𝑥𝑧− 1

4
𝑥− 1

4
𝑦𝑧+ 1

4
𝑦), (𝐴5, ℎ5) =

(V(⟨𝑎, 𝑏⟩), 0), and (𝐴6, ℎ6) = (V(⟨𝑎⟩) ∖V(⟨𝑎𝑏3 − 𝑎𝑏2 − 𝑏4 +
2𝑏3 − 𝑏2⟩), 𝑏𝑦).

For 𝐴1, we now compute the GCD of ℎ1 and 𝑓3. A mini-
mal CGS 𝒢1 of ⟨ℎ1 · e1, 𝑓3 · e1 − e2⟩ on 𝐴1 has one branch:
(𝐴1, 𝐺1) = (V(⟨0⟩) ∖V(⟨𝑎3 − 𝑎2𝑏+ 𝑎2⟩), {e2, ℎ1 · e1}). Then
𝐻1 = {1} and the GCD of ℎ1 and 𝑓3 on 𝐴1 is ℎ11 = ℎ1/1 =
𝑎𝑥+ 𝑏𝑦.



Using GCDs for other branches, compute the GCD of ℎ2

and 𝑓3 on 𝐴2. A minimal CGS 𝒢2 of ⟨ℎ2 · e1, 𝑓3 · e1 − e2⟩ on
𝐴2 has one branch: (𝐴2, 𝐺2) = (V(⟨𝑎 − 𝑏 + 1⟩) ∖ V(⟨2𝑏2 −
3𝑏+ 1⟩), {e2, ℎ2 · e1}). Then 𝐻2 = {1} and the GCD of ℎ2

and 𝑓3 on 𝐴2 is ℎ22 = ℎ2/1 = (𝑏− 1)𝑥+ 𝑏𝑦.
For the GCD of ℎ3 and 𝑓3 on 𝐴3: A minimal CGS 𝒢3 of

⟨ℎ3 ·e1, 𝑓3 ·e1−e2⟩ on 𝐴3, and obtain one branch: (𝐴3, 𝐺3) =
(V(⟨𝑎, 𝑏− 1⟩), {e2, ℎ3 · e1}). 𝐻3 = {1} so the GCD of ℎ3 and
𝑓3 on 𝐴3 is ℎ33 = ℎ3/1 = 𝑦.

For the GCD of ℎ4 and 𝑓3 on 𝐴4: A minimal CGS 𝒢4

of ⟨ℎ4 · e1, 𝑓3 · e1 − e2⟩ on 𝐴4, has one branch: (𝐴4, 𝐺4) =
(V(⟨2𝑎+ 1, 2𝑏− 1⟩) ∖V(⟨𝑏− 1⟩), {(2𝑥− 𝑧 + 1)e2, (3𝑥− 3𝑦) ·
e1 − 4e2}). 𝐻4 = {2𝑥− 𝑧 + 1} so the GCD of ℎ4 and 𝑓3 on
𝐴4 is ℎ44 = ℎ4/(2𝑥− 𝑧 + 1) = −𝑥+ 𝑦.

For branch 𝐴5, ℎ5 = 0 and 𝑓3 vanishes giving the GCD
ℎ55 = 0.

For the GCD of ℎ6 and 𝑓3 on 𝐴6: A minimal CGS 𝒢6 of
⟨ℎ6 ·e1, 𝑓3 ·e1−e2⟩ on 𝐴6 also has a single branch: (𝐴6, 𝐺6) =
(V(⟨𝑎⟩) ∖V(⟨𝑎𝑏3 − 𝑎𝑏2 − 𝑏4 + 2𝑏3 − 𝑏2⟩), {e2, ℎ6 · e1}). Then
𝐻6 = {1} so the GCD of ℎ6 and 𝑓3 on 𝐴6 is ℎ66 = ℎ6/1 = 𝑏𝑦.

The parametric GCDs of {𝑓1, 𝑓2, 𝑓3} are⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(V(⟨0⟩) ∖V(⟨𝑎3 − 𝑎2𝑏+ 𝑎2⟩), 𝑎𝑥+ 𝑏𝑦),
(V(⟨𝑎− 𝑏+ 1⟩) ∖V(⟨2𝑏2 − 3𝑏+ 1⟩), (𝑏− 1)𝑥+ 𝑏𝑦),
(V(⟨𝑎, 𝑏− 1⟩), 𝑦),
(V(⟨2𝑎+ 1, 2𝑏− 1⟩) ∖V(⟨𝑏− 1⟩),−𝑥+ 𝑦),
(V(⟨𝑎, 𝑏⟩), 0),
(V(⟨𝑎⟩) ∖V(⟨𝑎𝑏3 − 𝑎𝑏2 − 𝑏4 + 2𝑏3 − 𝑏2⟩), 𝑏𝑦).

6 GCD OF A SYSTEM OF
POLYNOMIALS

Given a system of parametric polynomials (with more than
2 polynomials), their GCD can also be computed by suc-
cessively computing the GCD two polynomials at a time.
Which two polynomials we choose can make a big difference.
We recognize that many heuristics are possible based on the
degrees of the polynomials as well as by first considering
specializations on which all but one polynomials vanish.

Currently, we compute the GCD of a pair of parametric
polynomials whose output is a finite set of constructible set-
s with the corresponding GCD. For each such branch, the
GCD is used to compute its GCD with the next polynomial
leading to more branches. The performance of our naive im-
plementation is reasonable because as computations proceed,
the degree of intermediate GCDs goes down substantially.
Our ultimate goal is to use a single comprehensive Gröbner
system computation for this but we have not been able to
develop such an algorithm yet.

7 IMPLEMENTATION AND
COMPARATIVE PERFORMANCE

The proposed algorithm has been implemented in the comput-
er algebra system Singular (4-0-3) [6]. The implementation
has been tried on a number of examples including the exam-
ples in [16] and it has been compared with implementations
of the two algorithms proposed by Nagasaka. The follow-
ing table compares our implementation with Nagasaka’s two

algorithms for computing GCD of parametric multivariate
polynomials (Nagasaka-GT and Nagasaka-SS) implement-
ed by us in Singular. The parametric polynomials for the
examples are given below:

Ex.1: 𝐹1 = {𝑎𝑥3 + (𝑎3 − 𝑎 + 1)𝑥2𝑦 + (𝑎2 + 2)𝑥𝑦2 + (3𝑎2 −
3)𝑦3, 𝑎𝑥3+(𝑎+1)𝑥2𝑦+4𝑥𝑦2+3𝑦3}, �⃗� = {𝑥, 𝑦}, �⃗� = {𝑎}.

Ex.2: 𝐹2 = {(𝑥+ 𝑎𝑦 + 𝑏𝑧)3 + 𝑐(𝑥+ 𝑎𝑦 + 𝑏𝑧) + 𝑑, 3(𝑥+ 𝑎𝑦 +
𝑏𝑧)2 + 𝑐, 3𝑎(𝑥+ 𝑎𝑦 + 𝑏𝑧)2 + 𝑎𝑐, 3𝑏(𝑥+ 𝑎𝑦 + 𝑏𝑧)2 + 𝑏𝑐},
�⃗� = {𝑥, 𝑦, 𝑧}, �⃗� = {𝑎, 𝑏, 𝑐, 𝑑}.

Ex.3: 𝐹3 = {𝑎𝑥𝑧 + (𝑎− 1)𝑦𝑧, (𝑎− 1)𝑥2 + 𝑎𝑥𝑦}, �⃗� = {𝑥, 𝑦, 𝑧},
�⃗� = {𝑎}.

Ex.4: 𝐹4 = {𝑎𝑥3𝑦2𝑧+(1−𝑏)(𝑦2+𝑧), (1−𝑎)𝑥3𝑦2𝑧+𝑏(𝑦2+𝑧)},
�⃗� = {𝑥, 𝑦, 𝑧}, �⃗� = {𝑎, 𝑏}.

Ex.5: 𝐹5 = {(1 − 𝑎)𝑦2 − 𝑏𝑥2 − 𝑐𝑥𝑦, (1 − 𝑏)𝑥2 − 𝑎𝑦2 − 𝑐𝑥𝑦},
�⃗� = {𝑥, 𝑦}, �⃗� = {𝑎, 𝑏, 𝑐}.

Ex.6: 𝐹6 = {𝑎𝑥2+ 𝑏𝑥𝑦+𝑎2𝑥𝑧+𝑎𝑏𝑥+𝑎𝑏𝑦𝑧+ 𝑏2𝑦, 𝑎𝑥2+ 𝑏𝑥𝑦+
(𝑎𝑏− 𝑎)𝑥𝑧− 𝑎2𝑥+(𝑏2 − 𝑏)𝑦𝑧− 𝑎𝑏𝑦, 𝑎𝑥2 + 𝑏𝑥𝑦+ 𝑎2𝑥𝑧+
(𝑎2−𝑎𝑏)𝑥+𝑎𝑏𝑦𝑧+(𝑎𝑏−𝑏2)𝑦}, �⃗� = {𝑥, 𝑦, 𝑧}, �⃗� = {𝑎, 𝑏}.

Ex.7: 𝐹7 = {𝑎𝑥2𝑦+𝑏𝑥+𝑦3, 𝑎𝑥2𝑦+𝑏𝑥𝑦+𝑐𝑥, 𝑦2+𝑏𝑥2𝑦+𝑐𝑥𝑦},
�⃗� = {𝑥, 𝑦}, �⃗� = {𝑎, 𝑏, 𝑐}.

Ex.8: 𝐹8 = {𝑎𝑥3𝑦+𝑐𝑥𝑧2, 𝑥2𝑦+3𝑑𝑦+𝑧, 𝑐𝑥2+𝑏𝑥𝑦, 𝑥2𝑦2+𝑎𝑥2},
�⃗� = {𝑥, 𝑦, 𝑧}, �⃗� = {𝑎, 𝑏, 𝑐, 𝑑}.

Ex.9: 𝐹9 = {(𝑎𝑥+𝑏𝑦)(𝑥+𝑎)(𝑦−𝑏), (𝑎𝑏𝑦2+𝑏−1)(𝑏𝑥+𝑎𝑦)(𝑥+
𝑏)(𝑦−𝑎), (𝑎𝑥𝑦+𝑎2𝑥−3𝑎)(𝑎𝑥+𝑏𝑦)(𝑥+𝑏), (𝑏𝑥+𝑎𝑦)(𝑎𝑥+
𝑏𝑦)(𝑎𝑥+ 𝑏)(𝑏𝑦 + 𝑎)}, �⃗� = {𝑥, 𝑦}, �⃗� = {𝑎, 𝑏}.

Ex.10: 𝐹10 = {(1−𝑎)𝑥2𝑦+𝑏𝑥2+𝑦2, 𝑎𝑥2𝑦+(1−𝑏)𝑥𝑦+𝑐𝑥, 𝑦2+
𝑏𝑥2𝑦 + (1− 𝑐)𝑥𝑦}, �⃗� = {𝑥, 𝑦}, �⃗� = {𝑎, 𝑏, 𝑐}.

For all these examples, the term orders used on �⃗� and �⃗� are
lexicographic orders, respectively.

In Table 1, entries labeled New are for the proposed
algorithm. Timings were obtained on a Core i7-4790 3.60GHz
with 4GB Memory running Windows 7. As is evident from
Table 1, the proposed algorithm performs better than the
Nagasaka’s algorithms. The code for the three algorithms
and the examples are available on the web at:

http://www.mmrc.iss.ac.cn/∼dwang/software.html.

8 CONCLUDING REMARKS

A new algorithm for computing the parametric GCD has
been proposed. Using module comprehensive Göbner sys-
tem, the parametric GCD of multivariate polynomials can be
computed. The experimental data in Table 1 suggests that
the proposed algorithm is superior in practice in comparison
with both the algorithms proposed by Nagasaka. We think
this is because our method does not compute the primitive
part of polynomials in different parameter spaces, and our
theorem guarantees that a parametric polynomial is divisible
by another parametric polynomial on various algebraically
constructible sets. Since the computational efficiency of our
algorithm depends on the number of branches in a module
comprehensive Gröbner system, we believe that the proposed
algorithm can be further improved by removing inessential
polynomials from comprehensive Gröbner system computa-
tions as discussed in [11]. This will be further studied in
the future along with heuristics to minimize the number of

http://www.mmrc.iss.ac.cn/~dwang/software.html


Table 1: Timings

Example Algorithm Time(sec.)

Ex.1
New 0.640

Nagasaka-GT 2.062
Nagasaka-SS 0.809

Ex.2
New 1.023

Nagasaka-GT 47.210
Nagasaka-SS 19.680

Ex.3
New 0.836

Nagasaka-GT 6.730
Nagasaka-SS 4.125

Ex.4
New 0.597

Nagasaka-GT > 1h
Nagasaka-SS 12.736

Ex.5
New 2.475

Nagasaka-GT 10.760
Nagasaka-SS 4.108

Ex.6
New 2.426

Nagasaka-GT > 1h
Nagasaka-SS 21.558

Ex.7
New 6.419

Nagasaka-GT > 1h
Nagasaka-SS > 1h

Ex.8
New 5.286

Nagasaka-GT > 1h
Nagasaka-SS 37.172

Ex.9
New 15.351

Nagasaka-GT > 1h
Nagasaka-SS 98.744

Ex.10
New 10.011

Nagasaka-GT > 1h
Nagasaka-SS > 1h

branches to be considered for computing the GCD of a system
of polynomials.
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comprehensive Gröbner systems. In Proceedings of the 2017
ACM on International Symposium on Symbolic and Algebraic
Computation. 341–348.

[17] M. Sanuki, D. Inaba, and T. Sasaki. 2016. Computation of GCD of
sparse multivariate polynomials by extended hensel construction.
In Proceedings of the 2016 IEEE International Symposium on
Symbolic and Numeric Algorithms for Scientific Computing.
34–41.

[18] T. Sasaki and M. Suzuki. 1992. Three new algorithms for multi-
variate polynomial GCD. Journal of Symbolic Computation 13,
4 (1992), 395–411.

[19] A. Suzuki and Y. Sato. 2006. A simple algorithm to compute
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