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ABSTRACT
Let A and B be two polynomials in

�
[x,y] and let R =

resx(A,B) denote the resultant of A and B taken wrt x. In
this paper we modify Collins’ modular algorithm for com-
puting R to make it output sensitive. The advantage of our
algorithm is that it will be faster when the bounds needed
by Collins’ algorithm for the coefficients of R and for the
degree of R are inaccurate. Our second contribution is an
output sensitive modular algorithm for computing the monic

resultant in � [y]. The advantage of this algorithm is that it
is faster still when the resultant has a large integer content.
Both of our algorithms are necessarily probabilistic.

The paper includes a number of resultant problems that
motivate the need to consider such algorithms. We have
implemented our algorithms in Maple. We have also imple-
mented Collins’ algorithm and the subresultant algorithm in
Maple for comparison. The timings we obtain demonstrate
that a good speedup is obtained.

Categories and Descriptors: I.1.2 [Symbolic and Alge-
braic Manipulation]: Algorithms – Algebraic algorithms.

General Terms: Algorithms

Keywords: Sylvester’s resultant, polynomial resultants,
modular algorithms, probabilistic algorithms.

1. INTRODUCTION
Let A = amxm + am−1x

m−1 + ... + a0 and B = bnxn +
bn−1x

n−1 + ... + b0 be two non-zero polynomials in x over
a commutative ring R of degrees m and n respectively. Let
R = resx(A,B) denote the resultant of A and B taken with
respect to x. If m = 0 the resultant is an

0 . If n = 0 the
resultant is bm

0 . If m > 0 and n > 0, the resultant is the
determinant of Sylvester’s matrix. Sylvester’s matrix is the
following m + n by m + n matrix S over R. The coefficients
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of A are repeated n times in the first n rows, and the coef-
ficients of B are repeated m times in the last m rows. Thus
the resultant is an element of the ring R.

S =

����������������������
�

am am−1 ... a0 0 ... 0

0 am am−1 ... a0 ... 0

...
. . .

. . .
. . .

...

0 ... 0 am am−1 ... a0

bn bn−1 ... b0 0 ... 0

0 bn bn−1 ... b0 ... 0

...
. . .

. . .
. . .

...

0 ... 0 bn bn−1 ... b0

� ���������������������
�

In this paper we are interested in computing the resultant
when the coefficients of A and B are polynomials over the
integers. In particular we focus on the bivariate case where
A and B are elements of

�
[x,y] and R ∈

�
[y]. Because

�
[y]

is an integral domain, the resultant may be computed using
fraction-free algorithms. The best fraction-free algorithm is
the subresultant algorithm of Brown and Traub [1]. It is a
fraction-free modification of Euclid’s algorithm. It requires
O(mn) arithmetic operations in

�
[y].

For
�

[y], the fastest method is the modular method of
Collins [2]. Collins’ method computes the resultant modulo
a sequence of primes S = p1, p2, p3, .... For each prime p ∈ S
it computes the resultant at y = α0, y = α1, ...,∈

�
p. The

resultant R ∈
�

[y] is reconstructed from these images in
�

p

using polynomial interpolation and Chinese remaindering.
This reduces the problem to computing many resultants in�

p[x]. The following property (see Ch. 9 of [6] for a proof),

resx(A,B) = (−1)mnbm−deg C
n resx(B, C),

where C is the remainder of A divided by B, means we can
modify the ordinary Euclidean algorithm to compute the
resultant in

�
p[x] using O(nm) arithmetic operations in

�
p.

Let R = cdyd + cd−1y
d−1 + ... + c0. Let h be the height

of R, that is, h = max(|cd|, |cd−1|, ..., |c0|). To apply Collins’
method, one needs a degree bound D on the degree of the
resultant, i.e., D ≥ d and, a coefficient bound H on the
height of the resultant, i.e., H ≥ h. The algorithm will use
sufficiently many primes pi such that Πpi > 2H. Here, the
factor of 2 is to allow for both positive and negative coeffi-
cients in

�
. For each prime p it will need D + 1 evaluation



points from
�

p. Suppose we use 31 bit primes on a 32 bit ma-
chine. Recall that the prime number theorem states that the
number of primes < x is asymptotically x/ ln x. Thus there
are approximately (231/31 − 230/30)/ ln 2 = 48.3 million 31
bit primes. This means we can reconstruct integers in R of
size approximately 1.5 billion bits using 31 bit primes. If
we do this then the modular resultant algorithm will use
M = O(log231 H) 31 bit primes.

Suppose the cost of computing one resultant of A(αj) mod
pi and B(αj) mod pi is bounded by C. Then the cost of
Collins’ modular resultant algorithm, assuming classical (i.e.
quadratic) algorithms for interpolation and Chinese remain-
dering, is O(CM(D + 1)) + O(M(D + 1)2) + O(M2(D + 1))
= O(MD(C + M + D)). These three contributions are for
the M(D+1) modular resultants, M interpolations of D+1
points, and applying the Chinese remainder theorem to at
most D + 1 coefficients, respectively. Observe that any over
estimate of either the degree bound or the coefficient bound
will affect the cost of the algorithm proportionately. Thus
for a practical implementation of Collin’s algorithm, we need
to consider how to obtain good bounds.

One can obtain a bound on d = degy R from Sylvester’s
matrix using the rows or the columns. That is,

Drow =

m+n�
i=1

m+n
max
j=1

degy Si,j and Dcol =

m+n�
j=1

n+m
max
i=1

degy Si,j

both bound d. We also have the Bezout theorem which says
that the number of roots of R(y) is bounded by Dbez =
deg A × deg B where deg A denotes the total degree of the
polynomial A in x and y. The Dbez bound is better than
Dcol and Drow when the inputs are dense. In our experience,
the bound Dcol based on the columns of S is usually better,
often by a factor of two than Drow, though the row bound
can be better, e.g., if m � n. We compute all three and
take D = min(Drow, Dcol, Dbez).

Let S′ be the matrix of integers where S′

i,j is the one-norm
of Si,j , i.e., the sum of the absolute value of the coefficients of
Si,j . In [7], Goldstein and Graham prove that Hadamard’s
bound on det(S′) bounds the height of the coefficients of

det(S). Hadamards bound is Πm+n
i=1 � � m+n

j=1 S′

i,j
2. One can

compute Hadamard’s bound along the rows or down the
columns of S′ and use the smaller of the two bounds. Again,
we find that the bound obtained using the columns of S′ is
usually better than that obtained using the rows.

How good are these bounds? If one fixes the degree in
y of all coefficients of A and B in x and chooses random
integers for the integer coefficients of A and B from a suf-
ficiently large set, say 10 digit random integers, then the
degree bound will be exact and the coefficient bound will be
almost tight. If the bounds for h and d could off by a factor
of 2 at most, then we would be happy. It turns out, however,
that there are real examples where these bounds can be ar-
bitrarily far off. In those cases, the subresultant algorithm
can be better, sometimes much better, than the modular re-
sultant algorithm. This makes algorithm selection difficult.
To motivate the need for an improved modular algorithm,
we need to study some real problems. We will consider four
problems in section 2. In section 3 and 4 we give two new
probabilistic algorithms. We end the introduction with a
complete description of the modular resultant algorithm of
Collins [2] for inputs A, B ∈

�
[x,y].

Collins’ Algorithm
In the specification of the algorithm, R = resx(A, B). So
R = 0 or R = cdyd + cd−1y

d−1 + ... + cl+1y
l+1 + cly

l for
some d ≥ l ≥ 0 and cdcl 6= 0. We call l the low degree

of the resultant and cl the trailing coefficient. The algo-
rithm assumes a degree bound D ≥ d and also a low degree
bound 0 ≤ L ≤ l. A low degree bound L can also be ob-
tained directly from Sylvester’s matrix. In our presentation
of Collins’ algorithm we improve the efficiency when a non-
trivial low degree bound L is known. For if R(y) is divisible
by yL then D − L + 1 evaluation points are sufficient.

Definition 1. Let A = amxm + ... + a0 and B = bnxn +
... + b0 be non-zero polynomials in

�
[y][x] of degrees m and

n. A prime p is said to be bad if am ≡ 0 mod p or bn ≡
0 mod p. Similarly, an evaluation point α ∈

�
p is said to be

bad if am(α) ≡ 0 mod p or bn(α) ≡ 0 mod p.

The correctness of the algorithm follows from noting that if
p is not a bad prime and α is not a bad evaluation, then

R(α) mod p = resx(A(α) mod p, B(α) mod p).

Algorithm CRES
Input A, B ∈

�
[x,y]\{0} of degree m and n resp.

Input D ≥ L ≥ 0 satisfying D ≥ d and L ≤ l.
Input H ≥ h = max(1, |cd|, |cd−1|, ..., |cl+1|, |cl|).
Output R = resx(A, B) ∈

�
[y].

1 Initialize M = 1, ∆ = D − L.

2 Initialize S to the set of primes such that Πp∈S(p) >
2H, and, for each prime p ∈ S, p > ∆+degy A+degy B
and p is not a bad prime.

3 REPEAT

3.1 Choose the next prime p from S.
Set Ap = A mod p and Bp = B mod p.

3.2 Set N = ∆ and choose N + 1 distinct non-zero
evaluation points α0, α1, ..., αN from

�
p such that

am(αi) 6≡ 0 mod p and bm(αi) 6≡ 0 mod p.

3.3 FOR i = 0, 1, ..., N DO

Compute ri ∈
�

p the resultant of Ap(αi) and
Bp(αi) modulo p using the Euclidean algo-
rithm and set ri = ri/αL

i mod p.

3.4 Interpolate r ∈
�

p[y] from (αi, ri) for i = 0..N .
Set r = yLr.

3.5 IF M = 1 then set M = p, R̄ = r.

3.6 ELSE (apply the Chinese remainder theorem)
Solve C ≡ r mod p and C ≡ R̄ mod M for C.
Set M = pM, R̄ = C.

UNTIL M > 2H.

4 Put the coefficients of R̄ in the symmetric range for�
M. Output R̄.

Remark: We require that p > ∆ so that there are suffi-
ciently many points for interpolating the resultant in

�
p[y].

The requirement that p > ∆ + degy am + degy bn allows for
the possibility that there could be as many as degy am +
degy bn bad evaluation points which must be avoided.



Remark: The set of primes S is usually taken to be the
biggest primes which the hardware of the machine supports.
Thus if we are using 31 bit primes on a 32 bit machine, we
would start with the largest such prime and simply count
down towards 0 skipping primes which are bad.

Remark: If y divides neither A nor B, the low degree bound
L computed from the rows of Sylvester’s matrix must be 0,
hence, a non-trivial bound for l can only come from the
columns of Sylvester’s matrix. If y divides A or B then one
should apply resx(A = yiĀ, B = yjB̄) = yni+mjresx(Ā, B̄).

2. HOW GOOD ARE THE BOUNDS?
We first look at four resultant problems to investigate how

good the degree bounds and height bounds for the resultant
are. If they are not good then the obvious line of attack
would be to look for better bounds. The examples, however,
tell us that it will be impossible to obtain accurate bounds
for real problems in general.

Example 2.1 (Cyclotomic Polynomials)
Let Φn(x) ∈

�
[x] denote the n’th cyclotomic polynomial.

For 2 ≤ i < j ≤ 200 we find that if i does not divide j
then the resultant of Φi(x) and Φj(x) is 1! Let Si,j be the
Sylvester matrix for Φi(x) and Φj(x). Hadamard’s bound
for Si,j is a moderately large integer. For i = 197 and
j = 199 Hadamard’s bound is > 10427 using the columns of
Si,j and > 10452 using the rows of Si,j . This example shows
that the height bound may be arbitrarily far off. It tells
us also that it will be impossible to obtain accurate bounds
in general without actually computing R. Furthermore, for
i = 197, j = 199, the remainder of Φj(x) divided Φi(x) is
x + 1. This means the subresultant algorithm will be much
faster than Collins’ modular resultant algorithm.

Example 2.2 (The Logistic Map)

Let f(x) = ax(1 − x) for parameter a. Let g(x) = f (n)(x).
The bifurcation points of f are roots of the polynomial r =
resx(g(x)− x, g′(x) + 1) ∈

�
[a]. For example, for n = 2,

g(x) − x = f(f(x)) − x

= −x(ax + 1 − a)(a2x2 − a2x − ax + a + 1),

g′(x) + 1 = 1 + (1 − 2x)a2 + (−4x3 + 6x2 − 2x)a3.

The resultant

r = −a9(a2 + 1)(a2 − 4a + 5)(a2 − 2a − 5)2.

Notice the high power of a dividing the resultant even though
neither input is divisible by a. In the following table we com-
pare the bounds for the degrees and heights with the actual
values for n = 3, 4, 5, 6, 7, 8. Columns l and d are the actual
low degree and degree of r in a. Columns L and D are the
best low degree and degree bounds for a. Column m is the
number of decimal digits of the height h of r and column M
is the number of digits of the bound H for the height of r.

Observe that for n = 8 the height bound is off by a factor
of over 38, and the number of points necessary to interpolate
r(a)/al, namely d − l + 1, is 42 times less than the degree
bounds D − L + 1 yield. Thus if we knew l, d and m the
modular algorithm would run over 1000 times faster!

These examples motivate us to design an output sensitive
modular resultant algorithm which will be probabilistic, that
is, it will output R with controllable high probability, and,
the number of primes and number of evaluation points used

n L D l d M m
3 37 98 49 73 24 7
4 148 430 225 289 97 19
5 571 1798 961 1121 383 48
6 2202 7350 3969 4353 1501 115
7 8569 29718 16129 17025 5894 269
8 33664 119510 65033 67073 23262 615

depends on the size of the resultant R. We detail this algo-
rithm, algorithm PRES, in section 2. We have implemented
it in Maple [9]. Below is a timing comparison comparing it
with Collins’ algorithm and the subresultant algorithm.

n Subres Collins PRES factor
3 0.01 .02 .01 0.01
4 0.49 .32 .06 0.01
5 21.3 13.2 .57 0.05
6 1359 688.8 7.6 0.20
7 143,514 41,354 120 2.05
8 – – 2,092 19.9

The timing data (in CPU seconds) was obtained using a
64 bit compile of Maple on an AMD Opteron 248 processor
running at 2.2 GHz. On such a machine, Maple uses 31.5 bit
primes. We see that Collins’ algorithm is not much faster
than the subresultant algorithm. Algorithm PRES is over
300 times faster than Collins’ algorithm for n = 7. The
timings in the last column are for factoring the resultant.
They are included to emphasize that the hard part of this
problem is computing the resultant.

Example 2.3 (Primary Decomposition of Ideals)
Let I be a zero-dimensional ideal in � [x, y, z, ...]. One way to
compute the primary decomposition of I is to first compute
a Gröbner basis G for I using a lex ordering. Suppose the
Gröbner basis is of the form

G = {g1(x), g2(x, y), g3(x, y, z), ...}.

One would then factor g1 ∈ � [x]. Suppose g1(x) is irre-
ducible and g2 is not linear in y. One would then factor g2

modulo g1. To factor g2 modulo g1 one may use Trager’s
algorithm [12]. Trager’s algorithm will begin by factoring
the polynomial r(y) = resx(g1(x), g2(x, y)) ∈

�
[y]. If r(y) is

square-free, then, for each irreducible factor fi of r, Trager’s
algorithm computes hi = gcd(fi, g2) modulo g1, an irre-
ducible factor of g2.

Consider the following example from the POSSO test suite
[11] where I ⊂ � [x, y, z, t, u] is generated by

−1 + 2x2 − 2y2 + 2z2 − 2t2 + 2u2,
−1 + 2x3 − 2y3 + 2z3 − 2t3 + 2u3,
−1 + 2x4 − 2y4 + 2z4 − 2t4 + 2u4,
−1 + 2x5 − 2y5 + 2z5 − 2t5 + 2u5,
−1 + 2x6 − 2y6 + 2z6 − 2t6 + 2u6.

We find that with u < t < x < y < z, G = {g1(u), g2(u, t),
g3(z, u), g4(y, t, u), g5(x, z, u)}. g1(u) is irreducible of degree
36 with 14 digit coefficients, g2(u, t) is quadratic in t, of
degree 35 in u with 112 digit coefficients, g3(u, z) is quadratic
in z with 113 digit coefficients, g4(y, t, u) is linear in y and
t and g5(x, z, u) is linear in x and z. The resultant r =
resu(g1, g2) has degree 72 in t and 3966 digit coefficients.



The bounds are good. The bound D on the degree is 72 and
the bound H on the coefficients of r is a 4485 digit integer.
However, r = cr′ where c is a 3931 digit integer content and
r′ is a polynomial of degree 72 with 36 digit coefficients!
Similarly, resu(g1, g3) also has a large integer content.

In the context of Trager’s algorithm, all we need is r′. This
motivates us to consider a modular resultant algorithm that
computes r′ not r. We do this via computing the monic re-
sultant r̃ = r/lcyr(y) using a modular algorithm which uses
rational number reconstruction [13]. The algorithm, algo-
rithm MRES, is presented in section 4. On this example, we
find that the time to compute r using Collins’ algorithm is
7.5s and the time to compute r′ using algorithm MRES is
0.16s for a speedup of a factor of 47. More significantly, the
time Maple takes to compute the entire primary decompo-
sition of I is reduced from 39.1s to 1.7s!

The following example is from Kotsireas [4]. Let I ⊂� [t, u, v, x, y, z] be generated by

(t − u)(x − y) − 2z + 2,
(t − u)(x + y − 2z) − 2(x − y),
(t − u)(t − v) − 2t − 2u + v + 1,

x2t3 − 1, y2u3 − 1, and z2v3 − 1.

With u < v < x < y < t, the lex Gröbner basis has two
polynomials g1(u) and g2(v, u) where g1(u) is of degree 51
in u with 18 digit coefficients and g2(v, u) is of degree 2 in u
with 446 digit coefficients. On this example r = resu(g1, g2)
has degree 102 in v with 22665 digit coefficients. Again,
the bounds are good. The bound D = 102 and the bound
H on the coefficients of R is 23641 digits. Again r = cr′

where c is a large integer, a 23607 digit integer and r′ has
33 digit coefficients. We find that the time using our Maple
implementation of Collins’ algorithm is 219.6s, algorithm
MRES takes 0.31s for a gain of a factor of 708.

Example 2.4 (SYZYGY Polynomials)
For positive integers m, n, the parametrization of the syzygy
figures in � 2 is given by

x(t) = sin(mt) and y(t) = cos(nt).

We can construct the equation f(x, y) = 0 for the curve by
first expanding multiple angles using

sin(2t) = 2 sin(t) cos(t) and cos(2t) = 2 cos(t)2 − 1,

applying the rational parametrization

sin(t) = 2t/(1 + t2), cos(t) = (1 − t2)/(1 + t2),

and then computing the resultant

f = rest((1 + t2)m(x − sin(mt)), (1 + t2)n(y − cos(nt))

in
�

[x,y]. For x(t) = sin(3t), y(t) = cos(5t) we obtain

f(x, y) = 70368744177664(256 x10 − 640 x8 + 560 x6 +
16 y6 − 200 x4 − 24 y4 + 25 x2 + 9 y2 − 1)

Observe that f(x, y) has a large integer content relative to
the size of the height of the primitive part of f(x, y). Ob-
serve also that f(x, y) is sparse, the monomials are even
powers in x or in y only. We compute the following data
for selected m and n. Column D is the degree bounds in
x and y for the resultant. Column d is the actual degrees
in x and y of the resultant. Column M is the length of the
height bound on the resultant, column m is the length of
the actual height of f(x, y), column c is the length of the

integer content of f(x, y) and column h is the length of the
height of the primitive part of f(x, y).

m n D d M m c h N
11 13 (26,22) (26,22) 276 168 159 9 25
11 15 (30,22) (30,22) 346 195 184 11 27
11 17 (34,22) (34,22) 416 221 209 12 29
11 19 (38,22) (38,22) 466 249 235 14 31
11 21 (42,22) (42,22) 516 275 260 15 33
11 23 (46,22) (46,22) 566 302 295 17 35
13 15 (30,26) (30,26) 381 230 219 11 29
15 17 (34,30) (34,30) 501 301 289 12 33
17 19 (38,34) (38,34) 637 382 368 14 37
19 21 (42,38) (42,38) 789 472 457 15 41
21 23 (46,42) (46,42) 958 583 556 17 45
23 25 (50,46) (50,46) 1144 883 665 18 49

Observe that the degree bounds are accurate. Observe
that the height of the resultant f(x, y) is a factor of 15 to
40 times longer than the height of the primitive part of the
resultant. This is another example where a monic resultant
algorithm that is output sensitive will help. The last col-
umn N shows the number of terms in the resultant f(x, y)
indicting how sparse it is. We infer N = 1 + m + n =
1 + (degx f + degy f)/2.

3. A PROBABILISTIC ALGORITHM
Algorithm PRES below chooses a prime p from a suit-

ably large set of primes S. It then computes the first image
r1 ∈

�
p[y] using the degree bounds D and L as in algorithm

CRES. Thus this first image uses D−L+1 evaluation points.
Let d1 = degy r1 and l1 be the low degree of r1 in y. To make
the algorithm output sensitive, one could assume d1 = d and
l1 = l and proceed to use d1 − l1 + 1 evaluation points for
the subsequent primes and terminate when the result of the
Chinese remaindering does not change for several iterations,
say K = 10 iterations. This will not work if d1 < d or l1 > l.
We begin with a definition.

Definition 2. Let R = cdyd + ... + cly
l where d ≥ l ≥ 0

and cdcl 6= 0. A prime p is said to be unlucky if p|cd or p|cl.

Observe that for a given input A and B, the number of
unlucky primes is finite.

Example 3.1 (Unlucky Primes)
Consider A = x4 + a3y

4x2 + a0y
2 and B = x− 1 in

�
[y][x].

Then R = resx(A, B) = a3y
4 + a0y

2 + 1. Thus any prime

dividing a3 is unlucky.

Observe that the leading coefficient of R in example 3.1 does
not depend on the leading coefficients of A and B. In general,
it will not be possible to efficiently compute cd or cl from A
and B to detect unlucky primes. Thus unlike bad primes,
we cannot efficiently avoid unlucky primes in advance.

Suppose the first prime p1 is unlucky. Our idea to detect
this is as follows. When we compute the second image, r2,
the resultant of A and B modulo p2, instead of using d1−l1+
1 evaluation points, we will use δ > 0 additional evaluation
points. If d1 = d and l1 = l then when we interpolate the
resultant modulo p2, it must have degree d2 ≤ d and l2 ≥ l
where d2 and l2 are the degree and low degree of the second
image. If d1 < d or l1 > l then when we interpolate r2,



provided p2 is not also unlucky, r2 will probably have degree
d2 = d1 + δ. If d2 > d1 then we detect that p1 was unlucky
and we will restart the algorithm with a new prime. By
requiring that the algorithm needs K primes of agreement
before it can terminate, there are at least K chances that the
algorithm can identify an unlucky prime in this way. The
timings for algorithm PRES reported in section 2 assumed
31.5 bit primes on a 64 bit machine, K = 5, and δ = 1. We
present the algorithm.

Algorithm PRES
Input A,B ∈

�
[x,y]\{0} of degree m and n resp.

Input D ≥ L ≥ 0 satisfying D ≥ d and L ≤ l.
Input H ≥ h = max(1, |cd|, |cd−1|, ..., |cl+1|, |cl|).
Input K ≥ 1 (number of primes of agreement).
Output R = resx(A,B) ∈

�
[y].

1 Initialize M = 1, ∆ = D − L, δ = 0, l = L, d = D.

2 Initialize S to a set of primes such that Πp∈Sp � 2H,
and for each p ∈ S, we have p > ∆ + degy A + degy B
and p is not a bad prime.

3 REPEAT

3.1 Choose a new prime p from S.

3.2 Set N = ∆+δ and choose N +1 distinct non-zero
evaluation points α0, α1, ..., αN from

�
p at ran-

dom such that am(αi) 6≡ 0 mod p and bm(αi) 6≡
0 mod p.

3.3 FOR i = 0, 1, ..., N DO

Compute ri ∈
�

p the resultant of A(αi) and
B(αi) modulo p using the Euclidean algo-
rithm and set ri = ri/αl

i mod p.

3.4 Interpolate r ∈
�

p[y] from (αi, ri) for i = 0..N.
Set r = ylr.

3.5 IF δ = 0 set the bounds:

3.5.1 If r = 0 set d = L − 1, l = L otherwise set
d = degy(r) and l to the low-degree of r in y.

3.5.2 Set δ = 1, ∆ = d − l, M = p, R̄ = r, j = 0.

3.6 ELIF degy(r) > d then – restart the algorithm
Initialize M = 1, ∆ = D − L, δ = 0, l = L, d = D.

3.7 ELSE apply the Chinese remainder theorem:

3.7.1 Solve C ≡ r mod p and C ≡ R̄ mod M for C
in the symmetric range.

3.7.2 If C = R̄ then set j = j + 1, M = p × M
ELSE set j = 0, M = p × M, R̄ = C.

UNTIL j = K.

4 Output R̄.

If the algorithm outputs R̄ 6= R we say that the algorithm
“fails”. We give two examples which illustrate the two ways
in which an adversary, who knows the sequence of primes
p1, p2, p3, ... can make the algorithm fail.

Example 3.2 (Likely Failure Case).
Consider A = x4+ay2x2+y4 and B = x−1 in

�
[y][x] where

a = p1p2 × ... × p11. The resultant R = resx(A, B) = y4 +
ay2 + 1. However, if we call algorithm PRES with K = 10

then the algorithm will output y4 + 1. The prime p1 is not

unlucky. The algorithm fails because it stabilizes too early.

Example 3.3 (Unlucky Prime Failure).
Consider A = x4 + ay4x2 + y2 and B = x − 1 in

�
[y][x]

where a = p1p2 × ... × p11. The resultant R = resx(A, B) =
ay4 + y2 + 1. If we call algorithm PRES with K = 10 then

it outputs y2 + 1. The algorithm stabilizes before detecting

that p1 is unlucky.

First we argue that the algorithm must terminate in finite
time. If the first prime p1 is not unlucky, it must terminate
K primes after M > 2h where h is the height of R. It could
terminate earlier as in example 3.2 with an incorrect output.
If p1 is unlucky then the algorithm must either terminate
early as in example 3.3 or it must eventually detect that
the first prime was unlucky and restart. It may restart with
another unlucky prime. But it must either terminate with
an incorrect output or eventually restart with a prime which
is not unlucky since the number of unlucky primes is finite.

There are two useful measures for the probability that al-
gorithm PRES fails. The first assumes the coefficients of R
modulo a prime p are uniformly distributed on [0, p). This
assumption will be true asymptotically over the set of all
inputs A,B of bounded size. The second is an adversarial
approach. Allow an adversary to choose R to maximize the
probability of failure. In both cases we bound the proba-
bility of failure and then choose S, K and δ so that this
probability of failure is low. The first measure is optimistic,
the second pessimistic. The performance of the algorithm on
real data will lie between the two. First note that if R = 0
the algorithm always outputs 0. Thus from now on assume
R = cdyd + ... + cly

l with cdcl 6= 0.

Unlucky primes: Let p1, p2, ... be the sequence of primes
chosen in step 3.1. Assuming that the coefficients of R mod-
ulo p are uniformly distributed on

�
p, the Pr(p1|cd) = 1/p1

and Pr(p1|cl) = 1/p1, hence, the Pr(p1 is unlucky) < 2/p1.

Premature termination with a wrong output: Sup-
pose p1 is not unlucky. Then for each subsequent prime p,
the algorithm uses sufficient points to interpolate R mod-
ulo p thus at the end of each iteration of step 3 we have
R ≡ R̄ mod M. The algorithm can output an incorrect an-
swer if at some iteration j before R̄ = R, we have R̄ ≡
R mod p for K consecutive primes pj+1, pj+2, ..., pj+K . That
is, at the end of iteration j + K we have P |R̄ − R where
P = pj+1 × pj+2 × ... × pj+K . If R̄ 6= R then R̄ differs from
R in at least one coefficient, say c̄i 6= ci. Again, assuming
the coefficients of R modulo p are uniformly distributed on�

p, the Pr(c̄i ≡ ci mod P ) = 1/P. But the algorithm could
terminate prematurely at any iteration j > K for this rea-
son. Suppose the algorithm uses 31 bit primes. Then it will
need no more than dlog231 he 31 bit primes to reconstruct
R. Hence the expected probability of failure when p1 is not
unlucky is < dlog231 he/231K.

Remark: In the above argument, if the algorithm fails then
P |R̄ − R, that is, P must divide c̄i − ci for all i = l, l +
1, ..., d. If R has d− l+1 non-zero coefficients then one may
be tempted to argue that the Pr(P |R̄ − R) < 1/P d−l+1.
However this assumes that the coefficients ci are of the same
length. In practice, it is often the case that the coefficients



cl, cl+1, ..., cd are of quite different lengths. In particular, cl,
the trailing coefficient of R, is often the largest.

Worst case bound: An adversary can, however, construct
inputs such that the resultant R = cdyd + ...+cly

l with cd =
p1, p3, ... and cl = p2, p4, ... where the primes p1, p2, ... are
chosen from S. On such inputs the probability of hitting un-
lucky primes is high. Similarly, an adversary can construct
inputs such that the resultant R = cdyd + ...+ciy

i + ...+cly
l

with ci = p1p2p3 × ... as in example 3.2. In this case, even
if p1 is not unlucky, the probability of terminating too early
is higher. The solution to both problems is to choose S so
that the probability that any coefficient of R vanishes is low.
Construct S, a set of primes, satisfying the conditions in step
2 with Πp∈Sp > H4 where H is the height bound. Now, if
the algorithm chooses primes at random from S, then

Pr( ci ≡ 0 mod p ) < 1/4

and

Pr( p is unlucky ) = Pr( p|cd or p|cl ) < 1/2.

To make the probability that that p is unlucky less than 2k

we much choose S with Πp∈Sp > H4k.

Unlucky Prime Detection
We now consider the case where p1 is unlucky. The algo-
rithm computes at least K more images and thus makes at
least K attempts to detect if p1 is unlucky. We will bound
the expected probability that the algorithm will fail to dis-
cover that p1 is unlucky in K iterations assuming δ = 1
additional evaluation points are used. We will assume, con-
servatively, that if a subsequent prime p is unlucky, the al-
gorithm will fail to detect that p1 is unlucky. Thus is the
cases considered below, we assume that the K subsequent
primes are not unlucky.

CASE r1 = 0, that is, p1|R(y).
Step 3.5.1 sets ∆ = −1 so that N = ∆ + δ = 0, hence, the
algorithm uses one non-zero evaluation point α0 to interpo-
late R(y)/yL. It fails to identify p1 is unlucky if and only
if R(α0)/αL

0 ≡ 0 mod p, that is, if and only if α0 is a root
of R(y)/yl = cdyd−l + ... + cl. On average, a polynomial
of degree n over

�
p has exactly one root. The worst case

occurs when R(y) = yn − 1 and n|p− 1 which has exactly n
distinct roots. Thus we have

Pr(R(α0) = 0) ≤ (d − l)/(p − 1) ≤ (D − L)/(p − 1).

CASE l1 = d1 = 0, that is, r1 is a constant.
Step 3.5.1 sets ∆ = 0 so that N = ∆ + δ = 1, hence, the
algorithm uses two non-zero evaluation points α0 and α1 to
interpolate R(y) in step 3.4. Let r = a + b(y − α0) where
a = α0 and b = (R(α1) − R(α0))/(α1 − α0). The algorithm
fails to identify p1 is unlucky if and only if b = 0, that is,
R(α1) ≡ R(α0) mod p. We claim that for 0 < α0 6= α1 < p,
the Pr(R(α0) ≡ R(α1) (mod p)) < d/p where d = degy(R).
To show this let

cv = |{α ∈
�

p, α 6= 0 : R(α) ≡ v (mod p)}|.

Now � cv = p−1 and 0 ≤ cv ≤ d. Because 0 < α0 6= α1 < p
are chosen at random, we have

Pr(R(α0) = R(α1))

=
�

v∈ � p

Pr(R(α0) = v) and Pr(R(α1) = v)

=
�

v∈ � p

c2
v

(p − 1)2
−

1

p − 1

where 1/(p − 1) accounts for α0 6= α1. This probability is
maximized when the cvs are maximized. Thus since 0 ≤
cv ≤ d it is

≤
d2

(p − 1)2
.
p − 1

d
−

1

p − 1
<

d − 1

p − 1
<

d

p
.

This maximum is achieved with R(y) = yd−1 and d|(p−1).
To summarize, if R(y) = p1(y

d − 1) and d|(p − 1), p1 is
unlucky and the probability that algorithm PRES fails to
detect this is less than d/p.

CASE d1 = 1, l1 = 0, that is, r1 is linear and l = 0.
Step 3.5.1 sets ∆ = 1 so that N = ∆ + δ = 2, hence, the
algorithm uses three non-zero evaluation points α0, α1 and
α2 to interpolate R(y) in step 3.4. Let

r = a + b(y − α0) + c(y − α0)(y − α1)

where a = R(α0) and b = (R(α1) − R(α0))/(α1 − α0) and

c =
R(α2) − a − b(α2 − α0)

(α2 − α0)(α2 − α1)
.

It fails to identify p1 is unlucky if and only if c = 0, that is,

R(α2) − R(α0) =
α2 − α0

α1 − α0
(R(α1) − R(α0)).

Because α0, α1 and α2 are non-zero, distinct, and random,
the fraction (α2 − α0)/(α1 − α0) is uniformly distributed
on [2, p − 1]. If R(α2) = R(α0) then the algorithm fails to
identify p1 is unlucky iff also R(α1) = R(α0). This happens
with probability at most d2/(p − 1)2. If R(α2) 6= R(α0)
then if R(α1) = R(α0) then the algorithm identifies p1 is
unlucky with probability 1, otherwise it fails to identify p1

is unlucky with probability at most 1/(p−2). Thus the total
probability of failure is at most d2/(p − 1)2 + 1/(p − 2).

CASES d1 = d − 1, l1 = l and d1 = d, l1 = l + 1.
Consider the case d1 = d − 1, l1 = l, that is, the degree
estimate is off by 1 but the low degree l1 is correct. In step
3.4 because we are using δ = 1 additional evaluation point,
we still have sufficient points to interpolate R/yl. Thus

r = R/yl mod ΠN
i=0(y − αi) = cdyd−l + ... + cl mod p.

Because p is not also unlucky (our assumption), then the
algorithm will identify p1 was unlucky with probability 1.

Now suppose d1 = d, l1 = l + 1, that is, the low degree
estimate is off by 1. Again, in step 3.4, because we are using
one additional evaluation point, we have sufficient points to
interpolate R/yl but the algorithm interpolates the rational
function

r = R/yl+1 mod ΠN
i=0(y − αi)

where N = d − l, R/yl = cdyd−l + ... + cl+1y + cl and

ΠN
i=0 = yd−l + ... + (−1)d−lA



where A = (−1)d−lα0α1...αN . Computing r over
�

we find
that r = cl

A
yd + .... Since αi are chosen from 0 < αi < p,

i.e., the αi are non-zero, A is also non-zero. Because p is
not unlucky (our assumption), then p does not divide cl,
hence, the algorithm will identify that p1 was unlucky with
probability 1.

CASE d1 = d − 1, l1 = l + 1.
That is, the degree estimate and the low degree estimate
are both off by 1. This time in step 3.4, we have one too
few points to interpolate the rational function R/yl+1, i.e.,
N = d − l − 1. Again, we interpolate

r = R/yl+1 mod ΠN
i=0(y − αi)

where R/yl = cdyd + ... + cl+1y + cl and ΠN
i=0(y − αi) =

yd−l−1 − ... − A where A = (−1)d−lα0α1...αN . Over
�

,

r = (cd −
cl

A
)yd−l−1 + ....

Thus the algorithm fails to identify that p1 is unlucky if
and only if Acd − cl ≡ 0 mod p. Now since the algorithm
chooses αi from 0 < αi < p at random A is non-zero and
it is uniformly distributed on (0, p). Since p is not unlucky
(our assumption), cd 6≡ 0 mod p and and cl 6≡ 0 mod p. Thus
Pr(Acd − cl ≡ 0 mod p) = 1/(p − 1).

CASE d1 = d − 2, l1 = l.
That is, the degree estimate is off by 2 and the low degree
l1 is correct. If δ = 1 then in step 3.4 we have 1 too few
points to interpolate R/yl, i.e., N = d − l − 1. The value r
interpolated in step 3.4 satisfies

r = R/yl mod ΠN
i=0(y − αi)

where R/yl = cdyd−l + cd−1y
d−l−1 + ... + cl and

ΠN
i=0 = yd−l−1 − Cyd−l−2 − ... − A

where C = α0 + α1 + ... + αN . Computing r over
�

we have

r = (cd−1 − cdC)yd−l−1 + ....

Because N > 0, i.e. we have at least two points, C is still
almost uniformly distributed on [0, p). For all 0 < x, y < p
we have by symmetry

Pr(C ≡ x mod p) = Pr(C ≡ y mod p).

By computer experiment, we find that

Pr(C = 0) − Pr(C 6= 0) = ±
1

(p − 1)N
.

Therefore C is almost uniformly distributed on [0, p), thus
Pr(cd−1 − cdC) ≡ 0 mod p) ∼ 1/p. We conclude that if p
is not also unlucky, the probability of not detecting this is
∼ 1/p in this case.

To summarize, if p1 is unlucky, and p2, ..., pK are not un-
lucky, then the probability that the algorithm fails to detect
that p1 is unlucky is decreasing from (d− l)/(p−1) to 1/p as
degy r1 increases. The maximum failure probability depends

on the difference d− l. It is bounded by (D−L)K/P where
P is the product of the K check primes. This maximum fail-
ure probability can be reduced by choosing δ > 1. Then the
maximum failure probability is bounded by (D − L)δK/P δ .

4. A MONIC RESULTANT ALGORITHM
Let R = cdyd + cd−1y

d−1 + ...+ cl+1y
l+1 + cly

l. Algorithm
MRES below outputs the monic resultant R/cd with high
probability. It uses Wang’s rational number reconstruction
(see [13, 3, 10]) to recover the rational coefficients of R/cd

from R/cd modulo M where M is a product of primes.

Algorithm MRES
Input A, B ∈

�
[x,y]\{0} of degree m and n resp.

Input D ≥ L ≥ 0 satisfying D ≥ d and L ≤ l.
Input H ≥ h = max(1, |cd|, |cd−1|, ..., |cl+1|, |cl|).
Input K ≥ 1 (number of primes of agreement.)
Output R = resx(A, B) ∈

�
[y].

1 Initialize M = 1, ∆ = D − L, δ = 0, l = L, d = D.

2 Initialize S to a set of primes such that Πp∈S � H2,
and for each p ∈ S, we have p > ∆ + degy A + degy B
and p is not a bad prime.

3 REPEAT

3.1 Choose a new prime p from S. Set Ap = A mod p
and Bp = B mod p.

3.2 Set N = ∆+δ and choose N +1 distinct non-zero
evaluation points α0, α1, ..., αN from

�
p at ran-

dom such that am(αi) 6≡ 0 mod p and bm(αi) 6≡
0 mod p.

3.3 FOR i = 0, 1, ..., N DO

Compute ri ∈
�

p the resultant of Ap(αi) and
Bp(αi) modulo p using the Euclidean algo-
rithm and set ri = ri/αl

i mod p.

3.4 Interpolate r ∈
�

p[y] from (αi, ri) for i = 0..N .
Set r = ylr.

3.4b If r 6= 0 then make r monic in
�

p[y].

3.5 IF δ = 0 set the bounds:

3.5.1 If r = 0 set d = L − 1, l = L otherwise set
d = degy(r) and l to the low-degree of r in y.

3.5.1 Set δ = 1, ∆ = d − l, M = p, R̄ = r, G =
FAIL, j = 0.

3.6 ELIF degy(r) > d then – restart the algorithm
Initialize M = 1, ∆ = D − L, δ = 0, l = L, d =
D, G = FAIL.

3.6b ELIF degy(r) < d then GOTO 3.1.

3.7 ELSE apply the Chinese remainder theorem:

3.7.1 Solve C ≡ r mod p and C ≡ R̄ mod M for C.

3.7.2 Set M = p × M, R̄ = C.

3.8 IF G 6= FAIL and G ≡ r mod p
THEN set j = j + 1 ELSE set j = 0, G = FAIL.

3.9 IF G = FAIL then apply rational reconstruction
to the coefficients of R̄ modulo M to obtain G.

UNTIL j = K.

4 Clear the fractions in G. Output G.

The first difference between algorithm MRES and PRES is
that MRES makes the images monic in step 3.4b so that
R/cd modulo M is reconstructed in step 3.7. A second dif-
ference is the addition of step 3.6b. If the degree of an image



is too low, this means the current prime p divides cd and we
cannot reconstruct the rational coefficients using this im-
age. A third difference is that we do not put the image
in the symmetric range in 3.7. The treatment of negative
rational coefficients is handled by rational reconstruction.

The main difference is the use of rational number recon-
struction in step 3.9. If this succeeds in step 3.9, the test in
step 3.8 tests in the subsequent iterations whether the cur-
rent image r is consistent with G the result of the rational
reconstruction. The algorithm terminates when we have K
consecutive primes of agreement.

The rational number reconstruction in step 3.9 should be
done in such a way that it will fail with high probability
when M is not large enough yet to recover the coefficients
of R/cd. Otherwise rational reconstruction may dominate
the cost of the algorithm. How to do this is described in
[10]. One may trivially modify the bounds used by Wang’s

rational reconstruction (for example, by using
�

(M − 1)/8

instead of the default bounds
�

(M − 1)/2 for the numer-
ators and denominators) or use the rational reconstruction
algorithm of Monagan in [10] to force it to fail with high
probability when M is not large enough to reconstruct R/cd.

Suppose the resultant R = ay+b ∈
�

[y] where gcd(a, b) =
1 and a and b have the same length. To reconstruct the
monic polynomial y+b/a using rational reconstruction, algo-
rithm MRES will need approximately twice as many primes
as algorithm PRES. This is the reason for the H2 in step
2. This suggests a hybrid algorithm, where we attempt to
reconstruct both R and R/cd, will be best.

The argument that algorithm MRES must always termi-
nate is the same as was made for algorithm PRES. We argue
that the failure probability of algorithm MRES is no worse
than twice that of algorithm PRES. This is because the only
essential difference is the use of rational reconstruction, and,
as we have just remarked, this may require up to twice the
number of primes.

5. CONCLUDING REMARKS
Examples 2.1 and 2.2 tell us that the modular resultant

algorithm of Collins may perform poorly when the bounds
for the coefficients and degrees are off. Example 2.4 gives a
second reason, namely, if the resultant is sparse and in sev-
eral variables. These realities make the choice between using
the subresultant algorithm, a determinant based algorithm,
or the modular resultant algorithm awkward. Algorithm
PRES solves the first problem. For sparse resultants one
might consider using a sparse interpolation algorithm. See
[14, 8].

Examples 2.3 and 2.4 tell us that the height of the prim-
itive part of the resultant can be much smaller than the
height of the resultant even when the inputs are primitive.
Algorithm MRES solves this problem.

An alternate design of algorithm PRES and algorithm
MRES would be to incrementally interpolate the first im-
age instead of using the bounds D and L. The main reason
we chose not to do this is that incremental interpolation is
significantly more expensive, especially if one does not know
l. This can make the performance of the algorithm poor for
the normal case when the degree bounds are good. Another
practical reason was that on our test problems, the time
spent computing the first image using D and L was not the
main cost. Also, by knowing in advance how many points

we are using we can more easily use an asymptotically fast
interpolation algorithm when D − L + 1 is very large.
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