
Resolving zero divisors using Hensel lifting.

John Kluesner
Department of Mathematics

Simon Fraser University
Burnaby, Canada

Email: jkluesner4112@gmail.com

Michael Monagan
Department of Mathematics

Simon Fraser University
Burnaby, Canada

Email: mmonagan@sfu.ca

Abstract—Algorithms which compute modulo triangular sets
must respect zero divisors. We present Hensel lifting as a
tool for resolving them. We give an application: a modular
algorithm for computing gcds of univariate polynomials with
coefficients modulo a radical triangular set over the rational
numbers. We have implemented our algorithm using Maple’s
RECDEN package. We compare our implementation with the
procedure RegularGcd in the RegularChains package.

Keywords-Modular algorithms, Triangular sets, Radical ide-
als, Hensel lifting, GCD.

I. INTRODUCTION

Suppose that we seek to find the greatest common divisor
g of two polynomials a, b ∈ Q(α1, . . . , αn)[x] where αi are
algebraic numbers. This problem was first solved using a
modular algorithm by Langemyr and McCallum [12] and
improved by Encarnacion [7]. Their solution first found a
primitive element and then applied an algorithm for one ex-
tension. Monagan and van Hoeij [10] improved the multiple
extension case by circumventing the primitive element.

The computational model for an algebraic num-
ber field is the quotient ring Q[z1, . . . , zn]/T where
T = 〈t1(z1), t2(z1, z2), . . . , tn(z1, . . . , zn)〉 and each ti
is the minimal polynomial of αi, hence irreducible, over
Q(α1, . . . , αi−1). A natural generalization, requested by
Daniel Lazard at ISSAC 2002, is to consider the same
problem when each ti is possibly reducible in which case
Q[z1, . . . , zn]/T may contain zero-divisors.

The generators of T form what is known as a triangular
set. Let R = Q[z1, . . . , zn]/T . This paper proposes a new
algorithm for computing gcd(a, b) with a, b ∈ R[x]. The
backbone of it is the Euclidean algorithm. However, the EA
can’t always be used in this ring. For example, suppose R =
Q[z1, z2]/T and T = {z21+1, z22+1}. Notice that z1−z2 and
z1 +z2 are zero-divisors modulo T . Consider computing the
gcd of a = x4 +(z1 +18z2)x3 +(3z1−z2)x2 +324x+323,
and b = x3 + (z1 + 18z2)x2 + (−19z2 + 2z1)x+ 324 using
the Euclidean algorithm. The remainder of a÷ b is

r1 = (z1 + 18z2)x2 + 323.

Since z1+18z2 is a unit, the division b÷r1 can be performed
giving the remainder

r2 = (z1 − z2)x+ 1.

The next step in the Euclidean algorithm would be to invert
z1 − z2, but it’s a zero-divisor, so it cannot continue. A
correct approach would be to split T into triangular sets
{z21 +1, z2−z1} and {z21 +1, z2+z1} using the factorization
z22 + 1 = (z2 − z1)(z2 + z1) (mod z21 + 1). After that,
finish the EA modulo each of these new triangular sets. It’s
possible to combine the results using the Chinese remainder
theorem, but that is costly so it is common practice to
instead return the output of the EA along with the associated
triangular set. For example, see the definition of pseudo-gcd
in [11] and regular-gcd in [13]. We follow this trend with
our definition componentwise-gcd in section 4.

Now, consider trying to compute gcd(a, b) using a mod-
ular algorithm. One would expect to hit the modular image
of the same zero-divisor at each prime and hence one could
combine them using Chinese remaindering and rational
reconstruction [18], [16]. For instance, the EA modulo 13
will terminate with the zero-divisor z1 + 12z2 (mod 13) as
expected. However, running the EA modulo 17 terminates
earlier because lc(r1) = z1 + 18z2 ≡ z1 + z2 (mod 17) is a
zero-divisor. This presents a problem: z1+z2 (mod 17) and
z1 + 12z2 (mod 13) will never combine into a zero-divisor
no matter how many more primes are chosen.

To circumvent, our algorithm lifts a zero-divisor modulo
a prime using Hensel lifting to a zero-divisor over Q. Our
technique handles both the expected zero-divisors (such
as z1 + 12z2 (mod 13) in the above example) and the
unexpected zero-divisors (such as z1 + z2 (mod 17)). A
different approach that we tried is Abbott’s fault tolerant
rational reconstruction as described in [1]; although this is
effective, we prefer Hensel lifting as it enables us to split
the triangular set immediately thus saving work.

In section 2, we review important properties of triangular
sets, such as being radical. If T is a radical triangular set
over Q, reduction modulo p doesn’t always result in a radical
triangular set. We prove that if T is radical over Q, then T
mod p is radical for all but finitely many primes. We give an
algorithm for determining if a prime p enjoys this property,
which is based on a corollary from Hubert [11].

In section 3, we present how to use Hensel lifting to
resolve zero-divisors. We prove a variant of Hensel’s lemma
that’s applicable to our ring and give explicit pseudo-

code for a Hensel lifting algorithm. The algorithm follows
the Hensel construction, but the presence of zero-divisors
demands a careful implementation.

In section 4, we present an application of Hensel lifting to
a modular gcd algorithm. Here, we define componentwise-
gcds and prove they exist when T is a radical triangular set.
We handle bad and unlucky primes, as par for the course
with any modular gcd algorithm. Our algorithm is best seen
as a generalization of Monagan and van Hoeij’s modular gcd
algorithm over number fields [10]. We give pseudo-code for
the modular gcd algorithm and all necessary sub-procedures.

In section 5 we give the complexity of our algorithm.
We include a new practical method for multiplying in R. In
section 6, we discuss our implementation of the previously
described algorithms in Maple using Monagan and van
Hoeij’s RECDEN package which uses a recursive dense
data structure for polynomials and algebraic extensions. We
compare it with the RegularGcd procedure in Maple’s
RegularChains package, which uses the subresultant
algorithm of Li, Maza, and Pan as described in [13].

II. TRIANGULAR SETS

A. Notation and Definitions

We begin with some notation. All computations will be
done in the ring k[z1, . . . , zn] where k is a field. We will
use the ordering zi < zi+1. Let f ∈ k[z1, . . . , zn] be non-
constant. The main variable mvar(f) of f is the largest
variable with nonzero degree in f , and the main degree of
f is mdeg(f) = degmvar(f)(f).

Triangular sets will be of key interest in this paper.
Further, they are to be viewed as a generalization of an
algebraic number field with multiple extensions. For this
reason, we impose extra structure than is standard:
Definition. A triangular set T is a set of non-constant
polynomials in k[z1, . . . , zn] satisfying

(i) |T | = n,
(ii) T = {t1, . . . , tn} where mvar(ti) = zi,
(iii) ti is monic with respect to zi, and
(iv) degzj (ti) < mdeg(tj) for j < i.

The degree of T is
∏n
i=1 mdeg(ti). Also, T = ∅ is a

triangular set.
Condition (i) states there are no unused variables; this

is equivalent to T being zero-dimensional. Condition (ii)
gives a standard notation that will be used throughout this
paper. Conditions (iii) and (iv) relates the definition to that of
minimal polynomials. Condition (iv) is commonly referred
to as a reduced triangular set as seen in [2]. The degree of
T is akin to the degree of an extension.
Example 1. The set {z31 + 4z1, z

2
2 + (z1 + 1)z2 + 4} is a

triangular set. However, {z22 + (z1 + 1)z2 + 4} wouldn’t
since there’s no polynomial with z1 as a main variable.
Also, {t1 = z31 + 4z1, t2 = z22 + z41z2 + 3} isn’t because
degz1(t2) = 4 > mdeg(t1).

We will let R = k[z1, . . . , zn]/T throughout this paper.
Since R is a finite-dimensional k-algebra, all nonzero ele-
ments are either zero-divisors or units.

We define Ti = {t1, . . . , ti} and T0 = ∅. For example,
let T = {z31 + 1, z32 + 2, z33 + 3}. Then, T3 = T , T2 =
{z31 + 1, z32 + 2}, T1 = {z31 + 1}. In general, since any
triangular set T forms a Grobner basis with respect to the lex
monomial ordering, it follows that k[z1, . . . , zi]∩〈T 〉 = 〈Ti〉
when 〈Ti〉 is viewed as an ideal of k[z1, . . . , zi]; this is a
standard result of elimination theory, see [5].

The presence of zero-divisors present many unforeseen
difficulties that the following examples illustrate.

Example 2. It is possible for a monic polynomial to factor as
two polynomials with zero-divisors as leading coefficients.
Consider the triangular set T = {z41 + 3z21 + 2, z32 − z2}.
There are some obvious zero-divisors modulo T which come
from the factorizations t1 = (z21 + 1)(z21 + 2) and t2 =
(z2 − 1)(z2 + 1)z2, but a not so obvious one is

z32 − z2 =
(
(z21 + 2)z22 − 1

) (
(z21 + 1)z32 + z2

)
. (1)

Factoring z32 − z2 = (z22 − 1)z2 is nicer because it creates a
splitting 〈T 〉 = 〈t1, z22−1〉∩〈t1, z2〉 of triangular sets where
the factorization in (1) would not. This greatly enhances
the complexity of handling zero-divisors. Equation (1) also
shows that the degree formula for the product of two
polynomials does not hold.

Example 3. Another difficulty is that denominators in a
monic factor f of a ∈ R[x] may not appear in the
denominator of a. For instance, let T = {z21 − 5}. Then,
x2 + x− 1 = (x− 1

2z1 + 1
2)(x + 1

2z1 + 1
2). The source of

the denominator of f is the defect d of R. It is known that
the discriminant ∆ of t1 is a multiple of d, usually, much
larger than d, see [7]. Thus we could try to recover ∆f with
Chinese remaindering then make this result monic. Instead
we use rational number reconstruction which circumvents
this difficulty.

For clarity and conciseness, it’s important to explicitly
state that g = gcd(a, b) if (i) g | a and g | b, and (ii) any
common divisor of a and b divides g.

B. Radical Triangular Sets

An ideal I ⊂ k[x1, . . . , xn] is radical if fm ∈ I implies
f ∈ I . To start, we give a structure theorem for radical
triangular sets. One could prove this by using the associated
primes of T as done in Proposition 4.7 of [11]. The structure
theorem gives many powerful corollaries.

Theorem 1. Let T ⊂ k[z1, . . . , zn] be a triangular set. Then,
k[z1, . . . , zn]/T is isomorphic to a direct product of fields
if and only if T is radical.

Corollary 2. Let T ⊂ k[z1, . . . , zn] be a radical triangular
set and R = k[z1, . . . , zn]/T . Let a, b ∈ R[x]. Then a
greatest common divisor of a and b exists.

Proof: This follows straightforwardly since being a gcd
is an invariant of an isomorphism.

Corollary 3 (Extended Euclidean Representation). Let
T ⊂ k[z1, . . . , zn] be a radical triangular set and R =
k[z1, . . . , zn]/T . Let a, b ∈ R[x] with g = gcd(a, b). Then,
there exist A,B ∈ R[x] such that aA+ bB = g.

Proof: Note that R[x] ∼=
∏
Fi[x] where Fi is a field.

Let a 7→ (ai)i and b 7→ (bi)i. Define hi = gcd(ai, bi)
in Fi[x]. By the extended Euclidean algorithm, there exists
Ai, Bi ∈ Fi[x] such that aiAi + biBi = hi. Let h 7→ (hi)i
and A 7→ (Ai)i and B 7→ (Bi)i. Clearly, aA + bB = h in
R[x]. Since h | g, we can multiply through by the quotient
to write g as a linear combination of a and b.

It should be noted that Corollary 3 works even if running
the EA on a and b encounters a zero-divisor. This shows it’s
more powerful than the extended Euclidean algorithm.

Definition. Let T ⊂ Q[z1, . . . , zn] be a radical triangular
set. A prime number p is a radical prime if p doesn’t appear
as a denominator of any of the polynomials in T , and if T
mod p ⊂ Zp[z1, . . . , zn] remains radical.

Example 4. The triangular set {z21 − 3} is radical over Q.
All primes besides 2 and 3 are radical since the discriminant
of z21 − 3 is 12.

If there were an infinite family of nonradical primes, it
would present a problem for the algorithm. We prove this
can’t happen. This has also been proven with quantitative
bounds in [6]. We use the following lemma which is a
restatement of Corollary 7.3 of [11]. It also serves as the
main idea of our algorithm for testing if a prime is radical;
see IsRadicalPrime below.

Lemma 4. Let T ⊂ k[z1, . . . , zn] be a triangular set. Then
T is radical if and only if gcd(ti, t

′
i) = 1 (mod Ti−1) for

all i.

Theorem 5. Let T ⊂ Q[z1, . . . , zn] be a radical triangular
set. All but finitely many primes are radical primes.

Proof: By Lemma 4, gcd(ti, t
′
i) = 1. By the ex-

tended Euclidean representation (Corollary 3), there exist
polynomials Ai, Bi ∈ (Q[z1, . . . , zi−1]/Ti−1)[zi] where
Aiti+Bit

′
i = 1 (mod Ti−1). Take any prime p that doesn’t

divide the denominator of any Ai, Bi, ti, t′i. This means one
can reduce this equation modulo p and so Aiti + Bit

′
i = 1

(mod Ti−1, p). This implies 1 is a gcd(ti, t
′
i) mod p and so

T remains radical modulo p by Lemma 4. There are only a
finite amount of primes that divide the denominator of any
of these polynomials.

Lastly, we give an algorithm for testing if a prime p is
radical. It may not always output True or False as it relies
on Lemma 4 which relies on a gcd computation modulo p,
which, if computed by the EA, may encounter a zero-divisor.
If this happens we output the zero-divisor.

Algorithm 1: IsRadicalPrime
Input : A radical triangular set T of Q[z1, . . . , zn]

and a prime number p where p 6 | den(ti) for
ti ∈ T .

Output: A boolean indicating if T remains radical
modulo p, or a zero-divisor.

1 for i = 1, . . . , n do
2 dt := ∂

∂zi
T [i];

3 g := gcd(T [i], dt) over Zp[z1, . . . , zi]/Ti−1;
4 if g = [“zerodivisor”, u] then
5 return [“zerodivisor”, u]
6 else if g 6= 1 then return False;
7 end
8 return True;

III. HANDLING ZERO-DIVISORS

We turn our attention to lifting a factorization f = ab
(mod T, p) for a, b, f ∈ R[x]. A general factorization
will not be liftable; certain conditions are necessary for
existence and uniqueness of each lifting step. For one, we
will need gcd(a, b) = 1 (mod p) as is required in the
case with no extensions to satisfy existence. Further, we
will need both a and b to be monic to satisfy uniqueness.
The following lemma gives a uniqueness criterion for the
extended Euclidean representation. It generalizes Theorem
26 in Geddes, Czapor, Labahn [9] from k[x] to R[x]. The
proof is the same since a, b are monic.

Lemma 6. Let T ⊂ Zp[z1, . . . , zn] be a radical triangular
set and R = Zp[z1, . . . , zn]/T . Let a, b ∈ R[x] be nonzero
and monic. Then, there exist unique σ, τ ∈ R[x] such that
aσ + bτ = c, deg(σ) < deg(b) for any c ∈ R[x].

We’re particularly interested in trying to factor tn modulo
Tn−1 because encountering a zero-divisor may lead to such
a factorization; that is, if w is a zero-divisor with main
variable zn, we can write u = gcd(tn, w) and then tn = uv
(mod Tn−1) by the division algorithm.

The next proposition shows that lifting is possible. It can
be proven using the Hensel construction as described in
chapter 6 of [9].

Proposition 7. Let T ⊂ Q[z1, . . . , zn] be a radical tri-
angular set and p a radical prime. Suppose tn ≡ u0v0
(mod Tn−1, p) where u0 and v0 are monic. Then, there exist
unique monic uj , vj ∈ Zpj [z1, . . . , zn] such that tn ≡ ujvj
(mod Tn−1, p

j) where uj ≡ u0 mod (mod Tn−1, p) and
vj ≡ v0 mod (mod Tn−1, p) for all j ≥ 0.

The algorithm HenselLift is a formal presentation of the
Hensel construction. The input is f ∈ R[x] and u0, v0 ∈
R/〈p〉[x] where u0, v0 are monic and f = u0v0 (mod p).
It also requires a bound B that’s used to notify failure.
A crucial part of the Hensel construction is solving the

diophantine equation σu0 + τv0 = c in R/〈p〉[x]. This is
done using the extended Euclidean algorithm (EEA) and
Lemma 6. It’s possible that a zero-divisor is encountered
in this process and we account for it in lines 2-4.

Algorithm 2: HenselLift
Input : A radical triangular set T over Q, a radical

prime p, f ∈ R[x], a0, b0 over Zp, and a
bound B. Assume f ≡ a0b0 (mod p) and
gcd(a0, b0) = 1.

Output: Either a, b ∈ R[x] where f = ab, FAIL if the
bound B is reached, or [“zerodivisor”, w] if a
zero-divisor w ∈ R/〈p〉 is encountered.

1 Solve sa0 + tb0 = 1 using EEA for s, t over Zp;
2 if a zero-divisor w is encountered then
3 return [“zerodivisor”, w];
4 end
5 Initialize u := a0, v := b0 as polynomials in R;
6 for i = 1, 2, . . . do
7 Apply rational reconstruction mod pi to u;
8 if RR succeeded with output a then
9 if a | f then return a, f/a;

10 end
11 if pi > 2B then return FAIL;
12 Compute e := f − uv in R[x];
13 Set c := (e/pi) mod p ;
14 Solve σa0 + τb0 = c for σ, τ ∈ R/〈p〉[x] using

sa0 + tb0 = 1;
15 Lift σ and τ to R;
16 Update u := u+ τpi and v := v + σpi;
17 end

The standard implementation of Hensel lifting requires a
bound on the coefficients of the factors of the polynomial
f ∈ R[x]. For the base case n = 0 where R[x] = Q[x] one
can use the Mignotte bound (see [8]). For the case n = 1
Weinberger and Rothschild [19] give a bound but note that it
is large. We do not know of any bounds for the general case
n > 1 and hypothesize that they would be bad. Therefore a
more “engineering”-esque approach is needed. Since we do
not know whether the input factor a0 is the image of a monic
factor of f , we repeat the Hensel lifting each time a zero-
divisor is encountered in our modular gcd algorithm, first
using a bound of 260, then 2120, then 2240 and so on, until
the coefficients of any monic factor of f can be recovered
using rational reconstruction.

The prime application of Hensel lifting will be to re-
solve zero-divisors. This is the goal of the algorithm Han-
dleZeroDivisorHensel. It assumes a zero-divisor has been
encountered mod a prime p by another algorithm (such as
our modular gcd algorithm). It attempts to lift this zero-
divisor using HenselLift. If HenselLift encounters a new
zero-divisor, it recursively calls itself. If the Hensel lifting

fails because a bound is reached, it outputs FAIL so the
algorithm using it picks a new prime. If the Hensel lifting
succeeds in finding a factorization tn = uv (mod Tn−1)
over Q, then the algorithm using it works recursively on
new triangular sets T (u) and T (v) where tn is replaced by
u and v.

Algorithm 3: HandleZeroDivisorHensel
Input : A radical triangular set T of Zp[z1, . . . , zn]

and a zero-divisor u0 modulo T with
mvar(u) = zn.

Output: FAIL or a factorization of some tk ∈ T .
1 Set v0 := Quotient(tn, u0) (mod Tn−1, p);
2 if v0 = [“zerodivisor”, w] then
3 return HandleZeroDivisorHensel(w);
4 end
5 if B is unassigned then
6 set B := 260 as a global variable;
7 else set B := B2;
8 Set u, v := HenselLift(tn, u0, v0, B);
9 if u = [“zerodivisor”, w] then

10 return HandleZeroDivisorHensel(w)
11 else if u = FAIL then return FAIL;
12 else return the factorization f = uv (mod T);

We’d like to make it clear that this is not the first case of
using p-adic lifting techniques on triangular sets. Lifting the
triangular decomposition of a regular chain has been used
by Dahan, Maza, Schost, Wu, Xie in [6].

IV. A MODULAR GCD ALGORITHM

The main content of this section is to fully present and
show the correctness of our modular gcd algorithm. First,
suppose a zero-divisor w over Q is found while running
the modular algorithm. It will be used to factor tk = uv
(mod Tk−1) where u and v are monic with main variable
zk. From here, the algorithm proceeds to split T into T (u)

and T (v) where tk is replaced with u in T (u) and v in T (v).
Of course ti is reduced for i > k as well. The algorithm then
continues recursively. Once the recursive calls are finished,
we could use the CRT to combine gcds into a single gcd,
but this would be very time consuming. Instead, we just
return both gcds along with their associated triangular sets
and refer to the output as a component-wise gcd, or c-gcd.
This approach is similar to Hubert’s in [11] which she calls
a pseudo-gcd.
Definition. Let R be a commutative ring with unity such
that R ∼=

∏r
i=1Ri and πi : R → Ri be the natural

projections. A component-wise gcd of a, b ∈ R[x] is a tuple
(g1, . . . , gr)

∏r
i=1Ri where each gi = gcd(πi(a), πi(b)) and

lc(gi) is a unit.
The modular algorithm’s goal will be to compute

c-gcd(a, b) given a, b ∈ R[x] where R = Q[z1, . . . , zn]/T

with T a radical triangular set. As with all modular gcd
algorithms, it’s possible that a prime is bad or unlucky, but
we prove there are only finitely many such primes.

Definition. Let T ⊂ Q[z1, . . . , zn] be a radical triangular
set, and R = Q[z1, . . . , zn]/T . Let a, b ∈ R[x] and g =
c-gcd(a, b). A prime number p is unlucky if g 6≡ c-gcd(a, b)
(mod T, p). Additionally, a prime is bad if it divides any
denominator in T , any denominator in a or b, or if lc(a) or
lc(b) vanishes mod p.

Theorem 8. Let T ⊂ Q[z1, . . . , zn] be a radical triangular
set, and R = Q[z1, . . . , zn]/T . Let a, b ∈ R[x] and g =
c-gcd(a, b). Only finitely many primes are unlucky.

Proof: Let R[x] ∼=
∏
Ri[x] where g 7→ (gi) so gi =

gcd(ai, bi) over Ri. Let a 7→ (ai) and b 7→ (bi). Suppose
gi = gcd(ai, bi) is monic without loss of generality. Let ai
and bi satisfy ai = giai and bi = gibi. I claim gcd(ai, bi) =
1. To show this, consider a common divisor f of ai and
bi. Note that fgi | ai and fgi | bi. Since gi = gcd(ai, bi),
it follows that fgi | gi; so there exists q ∈ Ri[x] where
fgiq = gi and so (fq − 1)gi = 0. Well, gi is monic in
x, and so can’t be a zero-divisor. This implies fq − 1 = 0
and so indeed f is a unit. Thus, gcd(ai, bi) = 1. By the
extended Euclidean representation (Corollary 3), there exists
Ai, Bi ∈ Ri[x] where aiAi + biBi = 1.

Let p be a prime where p doesn’t divide any of the de-
nominators in ai, ai, Ai, bi, bi, Bi, gi. Then, we may reduce

aiAi + biBi = 1 (mod p), (2)

ai = giai (mod p), bi = gibi (mod p). (3)

We will now show that gi = gcd(ai, bi) (mod p). By (3),
we get gi is a common divisor of ai and bi modulo p.
Consider a common divisor c of ai and bi modulo p. Mul-
tiplying equation (2) through by gi gives aiAi + biBi = gi
(mod p). Clearly, c | gi modulo p. Thus, gi is indeed a
greatest common divisor of ai and bi modulo p. As there
are finitely many primes that can divide the denominators
of fractions in the polynomials ai, ai, Ai, bi, bi, Bi, gi, there
are indeed finitely many unlucky primes.

The crux of ModularC-GCD is an algorithm to compute
gcd(a, b) for a, b ∈ Zp[z1, . . . , zn]/T [x]. We’ll be using
MonicEuclideanC-GCD, a variant of the monic Euclidean
algorithm. For computing inverses, the extended Euclidean
algorithm can be used; modifying MonicEuclideanC-GCD
to do this is straightforward.

A short discussion about the zero-divisors that may ap-
pear is warranted. To compute an inverse, the modular
algorithm will be using the extended Euclidean algorithm.
The first step would be to invert a leading coefficient u
of some polynomial. This requires a recursive call to an
extended version of EuclideanC-GCD(u, tk) modulo Tk−1
where mvar(u) = zk. If u isn’t monic, then it would again
attempt to invert lc(u). Because of the recursive nature, it

Algorithm 4: ModularC-GCD
Input : A radical triangular set T over Q and

a, b ∈ R[x] where R = Q[z1, . . . , zn]/T and
deg(a) ≥ deg(b) ≥ 0.

Output: c-gcd(a, b)
1 Initialize dg := deg(b), M = 1;
2 Main Loop: Pick a prime p that isn’t bad;
3 N := isRadicalPrime(T, p);
4 if N = [“zerodivisor”, u] then
5 K := HandleZeroDivisorHensel(u);
6 if K = FAIL then go to Main Loop;
7 else if K gives tk = wv (mod Tk−1) then
8 Create triangular sets Tw and T v where tk is

replaced by w and v;
9 return ModularC-GCD(a, b) (mod Tw),

ModularC-GCD(a, b) (mod T v);
10 end
11 else if N = False then go to Main Loop;
12 Set g := gcd(a, b) (mod T, p);
13 if g = [“zerodivisor”, u] then
14 K := HandleZeroDivisorHensel(u);
15 if K = FAIL then go to Main Loop;
16 else if K gives tk = wv (mod Tk−1) then
17 Create triangular sets Tw and T v where tk is

replaced by w and v;
18 return ModularC-GCD(a, b) (mod Tw),

ModularC-GCD(a, b) (mod T v);
19 end
20 else
21 if deg(g) = dg then
22 Use CRT to combine g with other gcds (if any)

into G and set M := M × p;
23 else if deg(g) < dg then
24 Set G := g, dg = deg(g), and M := p;
25 else if deg(g) > dg then go to Main Loop;
26 h := RationalReconstruction(G (mod M));
27 if h 6= FAIL and h | a and h | b then
28 return h
29 end
30 Go to Main Loop;
31 end

will keep inverting leading coefficients until it succeeds or a
monic zero-divisor is found. The main point is that we may
assume that the zero-divisors encountered are monic.

Now that all algorithms have been given, we give a proof
of correctness for ModularC-GCD. First, we show that a
finite number of zero-divisors can be encountered – this
ensures that the algorithm terminates. Second, Lemma 10
justifies the use of the modular gcd heuristics used in lines
21-25 by proving a uniqueness criterion for monic gcds.
After that, we prove Lemma 11, a statement about the

Algorithm 5: MonicEuclideanC-GCD
Input : A radical triangular set T over Zp and

a, b ∈ R[x] where R = k[z1, . . . , zn]/T and
deg(a) ≥ deg(b) ≥ 0.

Output: Either gcd(a, b) or a zero-divisor.
1 Initialize r0 := a, r1 := b and i := 1;
2 while ri 6= 0 do
3 Compute s := lc(ri)

−1 (mod Tn−1);
4 if s =[“zerodivisor”, u] then
5 return [“zerodivisor”, u]
6 else ri := s× ri;
7 Set ri+1 := Rem(ri−1, ri) and i = i+ 1;
8 end
9 return ri−1

primes that may occur in a monic factorization modulo the
triangular set; note this is nontrivial by example 3. This a key
step in the proof that the returned value of ModularC-GCD
is correct. The proof will require the concept of localization,
the formal process of introducing denominators in a ring; see
chapter 1 of Bosch [3] for details. For notation purposes,
we let S be a set of prime numbers and define RS as
the localization of R with respect to S. Note that when
R = Z[z1, . . . , zn]/T , it’s required that any prime dividing
any den(ti) must be included in S for RS to be a ring. We
will also use the iterated resultant:

The iterated resultant of f ∈ R with respect to T is

iterres(f, T) = iterres(reszn(f, tn), Tn−1),

iterres(f, {t1}) = resz1(f, t1).

One important property is that if f, T ∈ R′[x] ⊂ R[x] where
R′ is a subring, then there exist A,B1, . . . , Bn ∈ R′[x]
where Af+B1t1 + · · ·+Bntn = iterres(f, T). This follows
from the same proof as given in Theorem 7.1 of [9].

Proposition 9. Let R = Q[z1, . . . , zn]/T where T is a
radical triangular set and a, b ∈ R[x]. A finite number of
zero-divisors are encountered in ModularC-GCD(a, b).

Proof: We use induction on the degree of the extension
δ = d1d2 · · · dn where di = mdeg(ti). If δ = 1, then R ∼= Q
so no zero-divisors occur.

First, there are a finite number of non-radical primes. So
we may assume that T remains radical modulo any chosen
prime. Second, consider (theoretically) running the monic
Euclidean algorithm over Q where we split the triangular
set if a zero-divisor is encountered. In this process, a finite
number of primes divide either denominators or leading
coefficients of the remainders appearing in the Euclidean
algorithm; so we may assume the modular algorithm isn’t
choosing these primes without loss of generality.

Now, suppose a prime p is chosen by the modular al-
gorithm and a zero-divisor up is encountered modulo p at

some point of the algorithm. This implies gcd(up, tk) 6≡ 1
(mod Tk−1, p) for some 1 ≤ k ≤ n. We may assume that
up = gcd(up, tk) (mod Tk−1, p) and that up is monic; this
is because the monic Euclidean algorithm will only output
such zero-divisors. If up lifts to a zero-divisor over Q, the
algorithm constructs two triangular sets, each with degree
smaller than δ; so by induction, a finite number of zero-
divisors occur in each recursive call. Now, suppose lifting
fails. This implies there is some polynomial u over Q that
reduces to up modulo p and appears in the theoretical run
of the EA over Q. Note that gcd(u, tk) = 1 (mod Tk−1)
over Q since we’re assuming the lifting failed. By Theorem
8, this happens for only a finite amount of primes. Thus, a
finite number of zero-divisors are encountered.

Lemma 10. Let R = k[z1, . . . , zn]/T where T is a radical
triangular set and let a, b ∈ R[x]. If g = gcd(a, b) is monic,
g is the unique monic gcd(a, b).

Proof: Let h be a gcd(a, b). Then, h | g and g | h so
there exist u, v ∈ R[x] where hu = g and gv = h. This
gives g(uv− 1) = 0, but g can not be a zero-divisor as it is
monic. Therefore, v is a unit and so degx(v) = 0 because
T is radical. Thus, degx(h) = degx(g). In particular, if h
were monic, then v = 1 and so g = h.

Lemma 11. Let T be a radical triangular set over Q and
R = Q[z1, . . . , zn]/T . Let F = Z[z1, . . . , zn]. Suppose
f, u ∈ R[x] are monic such that u | f . Let

S = {prime numbers p ∈ Z : p isn’t radical or p | den(f)}.

Then, u ∈ FS [x]/T . In particular, the primes appearing in
denominators of any monic factor of f are either nonradical
primes or divisors of den(f).

Proof: Proceed by induction on n. Consider the base
case n = 1. Let t1 = a1a2 · · · as be the factorization
into monic irreducibles. Note that ai, aj are relatively prime
since t1 is square-free, and a1, a2 ∈ FS by Gauss’s lemma
(since S contains any primes dividing den(t1)). Let ui = u
mod ai and fi = f mod ai. By known results from alge-
braic number theory (see Theorem 3.2 of [7] for instance),
den(ui) consists of primes dividing ∆(ai) or den(fi). Note
that any prime p | ∆(ai) would force ai, and hence t1, to not
be square-free modulo p. This would imply p is nonradical
and so is contained in S; in particular, ui ∈ FS [x].

The last concern is if combining (u1, . . . , us) 7→ u
introduces another prime p into the denominator. We prove
this can only happen if p is nonradical. It’s sufficient to
show that combining two extensions is enough since we can
simply combine two at a time until the list is exhausted.
Now, consider the resultant r = resz1(a1, a2). Note that
there are A,B ∈ FS where Aa1 + Ba2 = r. Any prime
p | r forces gcd(a1, a2) 6= 1 (mod p) and so t1 wouldn’t
be square-free; this shows p ∈ S and A

r ,
B
r ∈ FS . Let

v = (Ar)a1u2 + (Br)a2u1. Note that v mod a1 = u1 and v

mod a2 = u2. Since the CRT gives an isomorphism, u = v
and indeed u ∈ FS [x]. This completes the base case.

For the inductive step, decompose T into its triangular
decomposition in the following way:

1) Factor t1 = a1a2 · · · as1 into relatively prime monic
irreducibles over Q as in the base case. This gives
Q[z1]/T1 is isomorphic to the product of fields∏
iQ[z1]/ai with ai ∈ FS .

2) We can factor the image t(i)2 of t2 over Q[z1]/ai into
t
(i)
2 = b

(i)
1 b

(i)
2 · · · b

(i)
s2 . Note that changing rings from

Q[z1]/t1 to Q[z1]/ai only involves division by ai, and
hence the only primes introduced into denominators can
come from den(ai).

3) By the induction hypothesis, any prime p dividing
den(b

(i)
j) is either not a radical prime of the triangular

set {ai} or comes from den(t
(i)
2). If {ai} is not radical

modulo p, then neither is {t1}.
4) This decomposes Q[z1, z2]/T2 into a product of fields∏

i,j Q[z1, z2]/〈ai, b(i)j 〉 where ai, b
(i)
j ∈ FS .

5) Repeat to decompose Q[z1, . . . , zn]/T into a product
of fields

∏
Q[z1, . . . , zn]/T (i) where T (i) ⊂ FS using

the induction hypothesis.
Let f (i) = f mod T (i) and similarly u(i) = u mod T (i).
By the construction above, these reductions only introduce
primes in S into denominators.

Note that Q[z1, . . . , zn]/T (i) is an algebraic number
field. Using the theorem of the primitive element, one
can write Q[z1, . . . , zn]/T (i) = Q(α) for some α ∈
Q[z1, . . . , zn]/T (i). Further, we may assume α = λ1z1 +
· · · + λnzn for integers λi using the same proof as in
page 119 of Theorem 5.4.1 in [4] (since the only property
used of the base field was that it is infinite). Next, we
claim the minimal polynomial mα,Q(z) can be computed as
m(z) := iterres(z − α, T (i)). To verify, note that m(α) = 0
and degz(iterres(z − α, T (i))) is bounded above by the
degree of T (i). The fields Q(α) and Q[z1, . . . , zn]/T (i) are
equal and so have the same degree over Q which implies
deg(mα,Q) equals the degree of Q[z1, . . . , zn]/T (i). Be-
cause both are monic, uniqueness of the minimal polynomial
gives m(z) = mα,Q(z). This result was used in the single
extension case by Trager in [17]. Also, iterres(z−α, T (i)) is
computed without introducing any prime into denominators
other than those in the defining polynomials of T (i). We now
prove that there are mappings Q(α)←→ Q[z1, . . . , zn]/T (i)

that only introduce primes that are contained in S. First,
α 7→ λ1z1 + · · · + λnzn gives one such map. Conversely,
note that t(i)1 certainly has a root in Q(α). This implies
(z1 − b1(α)) | t(i)1 . In particular, the base case guarantees
z1 − b1(α) only has primes in the denominator that are
contained in S. We will use z1 7→ b1(α). For t(i)2 , first
substitute z1 = b1(α) and then use the same idea as with
t
(i)
1 to get a map z2 7→ b2(α). Repeat to get maps for

each zi that is a function of α and does not introduce any

primes into denominators besides those in S. This shows
that only primes in S are introduced into the denominator
of u(i) when being mapped between the rings Q(α)[x] and
Q[z1, . . . , zn]/T (i)[x]. Now, the proof for the field case in
the base case shows that u(i) ∈ F/T (i)[x].

Of course den(u(i)) 6= den(u). It remains to show that
going from

∏
Q[z1, . . . , zn]/T (i) to Q[z1, . . . , zn]/T only

introduces primes in the denominators that are divisors of
den(f) or nonradical. This will follow from using iterated
resultants similarly to the resultants in the base case noting
that any prime dividing r = iterres(res(t(i)n , t

(j)
n), T

(i)
n−1) is

in S, and r ≡ At(i)n +Bt
(j)
n (mod T

(i)
n−1).

Theorem 12. Let R = Q[z1, . . . , zn]/T where T is a radical
triangular set and let a, b ∈ R[x]. The output of ModularC-
GCD(a, b) is a c-gcd(a, b).

Proof: It is enough to prove this for a single component
of the decomposition. For ease of notation, let T be the
triangular set associated to this component and let h be
the monic polynomial returned from ModularC-GCD with
T and let g = gcd(a, b) (mod T) over Q.

First, we may assume b is monic. If lcx(b) is a unit, mul-
tiply through by it’s inverse. This doesn’t change gcd(a, b).
If lcx(b) is a zero-divisor, the EA mod p would catch it and
cause a splitting, contradicting that the EA mod p didn’t
encounter a zero-divisor in this component of the c-gcd.
Since h passed the trial division in step 27, it follows that
h | g and hence deg(h) ≤ deg(g) since h is monic. Suppose
lc(g) is invertible. If so, make g monic without loss of
generality. Let p be a prime used to compute h. Since g
and b are monic and g|b, any prime appearing in den(g)
is either nonradical or a divisor of den(b) by Lemma 11.
In particular, since the prime p was used successfully to
compute h, it can’t occur in the denominator of g. So, we
may reduce g modulo p. Let f denote the reduction of a
polynomial f ∈ R[x] mod p. Since g | a and g | b, it
follows that g | h and so deg(g) ≤ deg(h). Since h | g,
they have the same degree, and both are monic, it must be
that h = g and so indeed h is a gcd of a and b.

Assume lc(g) is a zero-divisor and mvar(lc(g)) = zn.
Inspect lczn(lc(g)); if this is a unit, make it monic. If
it’s a zero-divisor, inspect lczn−1

(lczn(g))). Continue until
u = lczk+1

(· · · (lczn(lcx(g)) · · ·) is a monic zero-divisor.
Further, if gcd(u, tk) 6= u, then u/ gcd(u, tk) is a unit and
so we can divide through by it to ensure gcd(u, tk) = u. Let
tk = uv (mod Tk−1) be a monic factorization. Note that
Lemma 11 guarantees that the same factorization uv = tk
(mod Tk−1, p) occurs modulo p. Hence, we can split T into
triagular sets T (u) and T (v) where tk is replaced by u and
v, respectively, and this same splitting occurs modulo p.

Let gu = g mod T (u) and gv = g mod T (v) and sim-
ilarly for other relevant polynomials. It’s straightforward to
show that hu is still a gcd of au and bu and gu for au and bu.
Now, we consider both triangular sets T (u) and T (v). First,

in T (v), u is invertible otherwise T wouldn’t be radical. So,
multiply gv by u−1 so that lczk+1

(· · · (lczn(lcx(g)) · · ·) = 1.
Reinspect w = lczk+2

(· · · (lczn(lcx(gv))) · · ·). If w isn’t a
zero-divisor, multiply through by it’s inverse and repeat until
a zero-divisor is encountered as a leading coefficient. Do
the same computations to find another splitting and be in
the same situation as that of u in T . Otherwise, in T (u),
u = 0 and so lczk+1

(· · · (lczn(lcx(gu)) · · ·) has changed; if
it’s invertible, multiply through by its inverse until a monic
zero-divisor is found in the leading coefficient chain. We
will wind up in the situation with a monic factorization of
tj that is reducible mod p.

This process must terminate with a splitting where the
image of g is monic since lcx(g) has finite degree in each
variable. We have already shown that the image of h would
be a gcd in this case.

V. COMPLEXITY OF ALGORITHM MODULARC-GCD
Let R = k[z1, . . . , zn]/T where k is a field. Our gcd

algorithm will do many multiplications in R. Let a, b ∈ R
be reduced modulo T and let M(n) be the number of
field multiplications (fmuls) in k to multiply a × b in R.
The obvious approach is to first multiply in k[z1, . . . , zn]
then reduce mod T . We describe the classical approach
outlined by Li et. al. in [14]. Let di = mdeg(ti) and
let δ =

∏n
i=1 di be the degree of T . First view a and

b as polynomials in zn with coefficients modulo Tn−1.
Multiplying a(zn)× b(zn) mod Tn−1 involves recursively
multiplying all of coefficients of a(zn) by those of b(zn) and
reducing them modulo Tn−1. There are ≤ d2n such products
and we get a polynomial c(zn) of degree ≤ 2(dn − 1) in
zn. Next we divide c(zn) by tn(zn). Using the high-school
division algorithm this does ≤ deg c−dn+1 iterations for a
total of dn(dn − 1) recursive multiplications modulo Tn−1.
We have

M(n) ≤ (d2n + dn(dn − 1))M(n− 1), and M(0) = 1.

Solving this recurrence we obtain M(n) ∈ O(2nδ2). The
factor of 2n is significant. For n quadratic extensions we
have M(n) ∈ O(δ3). In [14] Li et. al. developed an FFT
based method for the case k = Zp. Their method is M(n) ∈
O(4nδ log(δ) log log δ). We modify the division of c(zn) by
tn(zn) modulo Tn−1 to obtain a simple method which is
faster for di up to about 16.

Theorem 13. Let M(n) be the number of field multiplica-
tions in k for computing a×b mod T . Let δ0 = 1, δ1 = d1,
δ2 = d1d2, . . . , δn = d1d2 . . . dn. Then

M(n) ≤ δ2n +

n∑
k=1

δ2k
dk − 1

dk

n∏
j=k+1

(2dj − 1)

which is exact in the dense case. Moreover, M(n) ≤ 3δ2.

Proof: Let D(n) be the number of fmuls needed to
reduce a polynomial of degree 2(dn−1) by Tn. It is assumed

D(n) works by first reducing by t1 then by t2 mod T1,
etc. Multiplying ab takes δ2n multiplications before reducing
mod T . Thus M(n) = δ2n + D(n). Let us divide c = ab

by tn mod Tn−1. Let c =
∑2(dn−1)
i=0 ciz

i
n and tn = zdnn +∑dn−1

i=0 piz
i
n. We can compute the quotient q =

∑dn−2
i=0 qiz

i
n

and remainder r =
∑dn−1
i=0 riz

i
n via the linear system r =

c− tnq as follows:

qdn−2 = c2dn−2,

qdn−3 = c2dn−3 − qdn−2pdn−1,
qdn−4 = c2dn−4 − qdn−3pdn−1 − qdn−2pdn−2,

...
q0 = cdn − q1pdn−1 − · · · − qdn−2p2,

rdn−1 = cdn−1 − q0pdn−1 − q1dn−2 − · · · − qdn−2p1,
rdn−2 = cdn−2 − q0pdn−2 − q1dn−3 − · · · − qdn−3p0,

...
r1 = c1 − q0p1 − q1p0,
r0 = c0 − q0p0.

The key idea is to compute the entire right-hand-side be-
fore reduction by Tn−1. This reduces the total number of
reductions from quadratic in dn to linear in dn. The total
cost of the reductions is (2dn− 1)D(n− 1) fmuls. We note
that the idea was used in [15] for reducing the number of
integer divisions by m when multiplying two polynomials
in Zm[x].

Now multiplying each qipj takes δ2n−1 fmuls. There are
0 + 1 + 2 + · · ·+ dn− 2 in the top dn− 1 rows and 1 + 2 +
· · ·+ (dn − 1) + (dn − 1) in the bottom dn rows for a total
of dn(dn − 1). Therefore

D(n) = (2dn − 1)D(n− 1) + dn(dn − 1)δ2n−1.

If n = 0 it takes 0 multiplications to reduce so we have
D(0) = 0. Solving the recurrence leads to the first result.
To obtain M(n) ≤ 3δ2 we proceed by induction on n. For
n = 0 we have D(0) = 0 ≤ 2 = 2δ0. For the induction step
we have

D(n) = (2dn − 1)D(n− 1) + dn(dn − 1)δ2n−1

≤ (2dn − 1)2δ2n−1 + dn(dn − 1)δ2n−1

= 4dnδ
2
n−1 − 2δ2n−1 + d2nδ

2
n−1 − dnδ2n−1

= (3dn − 2)δ2n−1 + δ2n.

Note that 3dn−2 ≤ d2n which follows from d2n−3dn+2 =
(dn−2)(dn−1) ≥ 0 for all dn ≥ 1 thus D(n) ≤ d2nδ2n−1 +
δ2n = 2δ2n. Finally M(n) = δ2n +D(n) ≤ 3δ2n = 3δ2.

Let a, b ∈ R[x] and let p be a prime. Let da = degx a,
db = degx b with da ≥ db and let dg = degx g. The
number of multiplications in R mod p that Algorithm
MonicEuclideanC-GCD does is ≤ (da − db + 2)(dg + db)

for the first division and ≤
∑dg+db−1
i=dg

2i = db(db+2dg−1)

for the remaining divisions. Thus if Algorithm ModularC-
GCD uses M primes of constant size the total cost of the
monic Euclidean algorithm is O(Mdadb) multiplications in
R modulo p. The trial divisions h|a and h|b cost dadg
and dbdg multiplications in R respectively. Note, if the
rational reconstruction algorithm in [16] is used, then with
high probability h = g so the trial divisions will be done
once. Summarizing, the expected number of multiplications
Algorithm ModularC-GCD does is O(Mdadbδ

2) in Zp and
O(dg(da + db)δ

2) in Q.

VI. COMPARISON WITH RegularGcd

We have implemented ModularC-GCD as presented
above using Maple’s RECDEN package, which uses a recur-
sive dense data structure for polynomials with extensions;
see [10] for details. The Maple code for our software as
well as several examples with their output can be found at
http://www.cecm.sfu.ca/CAG/code/MODGCD.

The remainder of this section will be used to compare
our algorithm with the RegularGcd algorithm (see [13])
which is in the RegularChains package of Maple.
RegularGcd computes a subresultant polynomial remain-
der sequence and outputs the last non-zero element of the
sequence. We highlight three differences between the output
of RegularGcd and ModularC-GCD.

1) The algorithms may compute different triangular de-
compositions of the input triangular set.

2) RegularGcd doesn’t return reduced output. The com-
mand NormalForm is used to compute the reduced
version. ModularC-GCD uses the CRT and RR on
images of the c-gcd modulo multiple primes, so it com-
putes the reduced version of the c-gcd automatically.

3) RegularGcd computes gcds up to units, and for some
inputs the units can be large. ModularC-GCD com-
putes the monic gcd which may have large fractions.

Example 5. We’d like to illustrate the differences with an
example provided by an anonymous referee of an earlier
version of this paper. Let

T = {x3 − x, y2 − 3
2yx

2 − 3
2yx+ y + 2x2 − 2},

a = z2 − 8
3zyx

2 + 3zyx− 7
3zy −

1
3zx

2 + 3zx− 5
3z+

+ 25
6 yx

2 − 13
2 yx+ 10

3 y + 16
3 x

2 − 2x− 10
3 ,

b = z2 + 29
12zyx

2 + 7
4zyx−

11
3 zy −

8
3zx

2 + 3zx+ 2
3z+

+ 67
12yx

2 − 11
4 yx−

13
3 y −

13
3 x

2 − 2x+ 19
3 .

When we run our algorithm to compute c-gcd(a, b), it returns

z2 + (3x− 2)z − 2x+ 2 (mod y, x2 − 1),

z + 1
2x−

3
2 (mod y − 3

2x−
1
2 , x

2 − 1),

z + 5 (mod y + 2, x),

1 (mod y − 1, x).

The same example using RegularGcd returns

360z + 1800 (mod y + 2, x),

62208 (mod y − 1, x),

z2 + z (mod y, x− 1),

360z − 360 (mod y − 2, x− 1),

z2 − 5z + 4 (mod y, x+ 1),

−360z + 720 (mod y + 1, x+ 1)

after using the NormalForm command. The outputs were
not reduced prior to using NormalForm. In general, the
output of our algorithm deals with smaller numbers. This
is an advantage for the user. Note that RegularGcd may
output a smaller decomposition than ModularC-GCD as
well, it depends on the input.

Finally, we’d like to conclude with some timing tests
which show the power of using a modular gcd algorithm
that recovers the monic c-gcd using rational reconstruction.
We first construct random triangular sets where each ti is
monic in zi and dense in z1, . . . , zi−1 with random two digit
coefficients. We then generate a, b, g ∈ R[x] with degrees
6, 5, and 4, respectively. Then, compute c-gcd(A,B) where
A = ag and B = bg. Maple code for generating the test
inputs is included on our website.

extension ModularC-GCD RegularGcd
degrees time #primes time #terms
[2, 2] 0.029 3 0.346 720
[3, 3] 0.184 17 4.433 2645

[2, 2, 2] 0.218 9 29.357 8640
[4, 4] 0.512 33 40.705 5780

[2, 2, 2, 2] 1.403 33 758.942 103680
[3, 3, 3] 2.755 65 1307.46 60835
[4, 2, 4] 1.695 33 86.088 19860

[64] 6.738 65 160.021 3470
[8, 8] 13.321 129 5251.05 30420

[4, 4, 4] 17.065 129 22591.4 196520

Table I
THE FIRST COLUMN IS THE DEGREE OF THE EXTENSIONS, THE SECOND IS THE

CPU TIME IT TOOK TO COMPUTE c-gcd OF THE INPUTS FOR MODULARC-GCD,
THE THIRD IS THE NUMBER OF PRIMES NEEDED TO RECOVER g, THE FOURTH IS

THE CPU TIME IT TOOK FOR RegularGcd TO DO THE SAME COMPUTATION, THE

FIFTH IS THE NUMBER OF TERMS IN THE UNNORMALIZED GCD OUTPUT BY

RegularGcd. ALL TIMES ARE IN SECONDS.

In the previous dataset, g isn’t created monic in x, but
ModularC-GCD computes the monic gcd(A,B). Since lc(g)
is a random polynomial, its inverse in R will likely have
very large rational coefficients, and so additional primes have
to be used to recover the monic gcd. This brings us to an
important advantage of our algorithm: it is output-sensitive.
In Table II below g is a monic degree 4 polynomial with a
and b still of degree 6 and 5. Notice that our algorithm
finishes much faster than the earlier computation, while
RegularGcd takes about the same amount of time. This
happens because the coefficients of subresultants of A and

B are always large no matter how small the coefficients of
gcd(A,B) are.

extension ModularC-GCD RegularGcd
degrees time #primes time #terms
[2, 2] 0.02 2 0.329 715
[3, 3] 0.048 2 4.412 2630

[2, 2, 2] 0.05 2 31.766 8465
[4, 4] 0.077 2 36.854 5750

[2, 2, 2, 2] 0.117 2 431.368 99670
[3, 3, 3] 0.222 2 1615.28 57645
[4, 2, 4] 0.05 2 71.351 16230

[64] 0.304 2 98.354 3450
[8, 8] 0.482 2 5979.51 29505

[4, 4, 4] 0.525 2 4751.04 192825

Table II
THE COLUMNS ARE THE SAME AS FOR TABLE I

Let da = degx a, db = degx b and dg = degx g. In Table III
below we increased da and db from 6 and 5 in Table I to 9
and 8 leaving the dg at 4. By increasing db we increase the
number of steps in the Euclidean algorithm which causes an
expression swell in RegularGcd in the size of the integer
coefficients and the degree of each z1, . . . , zn, that is, the
expression swell is (n+1) dimensional. Increasing da, db, dg
from 6, 5, 4 in Table I to 9, 8, 4 increases the number of
multiplications in R in the monic Euclidean algorithm from
87 to 156 and from 24+20 = 44 to 36+32 = 68 for the trial
divisions but the monic gcd remains unchanged. Comparing
Table I and Table III the reader can see that the increase in
ModularC-GCD is less than a factor of 2.

extension ModularC-GCD RegularGcd
degrees time #primes time #terms
[2, 2] 0.043 5 1.912 1620
[3, 3] 0.214 17 34.513 6125

[2, 2, 2] 0.287 9 173.53 29160
[4, 4] 0.638 33 245.789 13520

[2, 2, 2, 2] 2.05 33 3528.41 524880
[3, 3, 3] 3.35 33 11924.0 214375
[4, 2, 4] 2.399 33 869.116 68940

[64] 10.097 65 658.518 5360
[8, 8] 21.890 129 38554.9 72000

[4, 4, 4] 37.007 129 > 50000 –

Table III
THE COLUMNS ARE THE SAME AS FOR TABLE I

VII. CONCLUSION

A modular gcd algorithm is always preferable to a non-
modular gcd algorithm that computes over Q or Z. This
is evident from our data. What we have shown is that it’s
possible to extend the modular algorithm of Monagan and
van Hoeij from [10] to work over R = Q[z1, . . . , zn]/T
where R is not a field and the Euclidean algorithm may
encounter a zero divisor. We use Hensel lifting to recover
the zero-divisor over Q then split the triangular set T so that
the modular algorithm can continue.

REFERENCES

[1] John Abbott. Fault-tolerant modular reconstruction of rational
numbers. J. Symb. Comp., 80: 707− 718, 2017.

[2] P. Aubry, D. Lazard, and M. Moreno Maza. On the theories
of triangular sets. J. Symb. Comp., 28: 105− 124, 1999.

[3] S. Bosch. Algebraic Geometry and Commutative Algebra.
Springer-Verlag London. 2013.

[4] D. Cox. Galois Theory. Wiley-Interscience, 2004.

[5] D. Cox, J. Little, D. O’Shea. Ideals, Varieties and Algorithms.
Springer-Verlag, 1991.

[6] X. Dahan, M. Moreno Maza, E. Schost, W. Wu and Y. Xie.
Lifting Techniques for Triangular Decompositions. Proceed-
ings of ISSAC’05, ACM Press, 108− 115, 2005.

[7] M. Encarnacion. Computing GCDs of Polynomials over Al-
gebraic Number Fields, J. Symb. Comp. 20: 299−313, 1995.

[8] J. von zur Gathen and J. Gerhard, Modern Computer Algebra,
3rd ed., Cambridge University Press, 2013.

[9] K. O. Geddes, S. R. Czapor, and G. Labahn. Algorithms for
Computer Algebra. Kluwer, 1992.

[10] Mark van Hoeij and Michael Monagan, A modular GCD algo-
rithm over number fields presented with multiple extensions.
Proceedings of ISSAC 02, ACM Press, 109− 116. 2002.

[11] E. Hubert. Notes on Triangular Sets and Triangulation-
Decomposition Algorithms I: Polynomial Systems. Springer-
Verlag LNCS 2630, pp. 1− 39. 2003.

[12] L. Langemyr, S. McCallum. The Computation of Polynomial
GCDs over an Algebraic Number Field, J. Symb. Comp. 8:
429− 448, 1989.

[13] Xin Li, Marc Moreno Maza, and Wei Pan. Computations
Modulo Regular Chains. Proceedings of ISSAC ’09, pp. 239–
246, 2009.

[14] Xin Li, Marc Moreno Maza, and Eric Schost. Fast Arithmetic
for Triangular Sets: from Theory to Practice. J. Symb. Comp.,
44(7): 891–907, 2009.

[15] M. B. Monagan. In-place arithmetic for polynomials over Zn.
Proceedings of DISCO ’92, Springer-Verlag LNCS, 721, pp.
22–34, 1993.

[16] M. B. Monagan. Maximal Quotient Rational Reconstruction:
An Almost Optimal Algorithm for Rational Reconstruction.
Proceedings of ISSAC ’2004, ACM Press, pp. 243–249, 2004.

[17] Barry Trager. Algebraic Factoring and Rational Function
Integration. Proceedings of SYMSAC ’76, ACM Press, 219–
226, 1976.

[18] Paul S. Wang, M.J.T. Guy, and J.H. Davenport. P-adic recon-
struction of rational numbers. ACM SIGSAM Bulletin 16(2):
2–3, 1982.

[19] P.J. Weinberger and L.P. Rothschild. Factoring Polynomials
over Algebraic Number Fields. ACM Trans. on Math. Soft.
2(4): 335–350, 1976.

