
MACM 401/MATH 801

Assignment 5, Spring 2019.

Michael Monagan

Due Friday March 22nd at 4pm. Hand in to dropoff box 1a outside AQ 4100.
Late Penalty: −20% for up to 72 hours late. Zero after that.
For problems involving Maple calculations and Maple programming, you should submit a printout
of a Maple worksheet of your Maple session.

Question 1: Factorization in Zp[x] (25 marks)

(a) Factor the following polynomials over Z11 using the Cantor-Zassenhaus algorithm.

a1 = x4 + 8x2 + 6x+ 8,

a2 = x6 + 3x5 − x4 + 2x3 − 3x+ 3,

a3 = x8 + x7 + x6 + 2x4 + 5x3 + 2x2 + 8.

Use Maple to do all polynomial arithmetic, that is, you can use the Gcd(...) mod p and
Powmod(...) mod p commands etc., but not Factor(...) mod p.

(b) As an application, compute the square-roots of the integers a = 3, 5, 7 in the integers modulo
p, if they exist, for p = 1020 + 129 = 100000000000000000129 by factoring the polynomial
x2−a in Zp[x] using the probabilistic factoring algorithm. Show your working. You will have
to use Powmod here.

For large p, what is the expected time complexity to factor x2 − a in Zp[x] using this proba-
bilistic method? Assume a multiplication in Zp costs O(log2 p).

Question 2: Factorization in Z[x] (25 marks)

Factor the following polynomials in Z[x].

a1 = x10 − 6x4 + 3x2 + 13

a2 = 8x7 + 12x6 + 22x5 + 25x4 + 84x3 + 110x2 + 54x+ 9

a3 = 9x7 + 6x6 − 12x5 + 14x4 + 15x3 + 2x2 − 3x+ 14

a4 = x11 + 2x10 + 3x9 − 10x8 − x7 − 2x6 + 16x4 + 26x3 + 4x2 + 51x− 170

For each polynomial, first compute its square free factorization. You may use the Maple command
gcd(...) to do this. Now factor each non-linear square-free factor as follows. Use the Maple
command Factor(...) mod p to factor the square-free factors over Zp modulo the primes p =
13, 17, 19, 23. From this information, determine whether each polynomial is irreducible over Z or
not. If not irreducible, try to discover what the irreducible factors are by considering combinations
of the modular factors and Chinese remaindering (if necessary) and trial division over Z.

Using Chinese remaindering here is not efficient in general. Why?
Thus for the polynomial a4, use Hensel lifting instead. That is, using a suitable prime of your choice
from 13, 17, 19, 23, Hensel lift each factor mod p, then determine the irreducible factorization of a4
over Z.

1

Question 3: Cost of the linear p-adic Newton iteration (15 marks)

Let a ∈ Z and u =
√
a. Suppose u ∈ Z. The linear P-adic Newton iteration for computing u from

u mod p that we gave in class is based on the following linear p-adic update formula:

uk = −φp(f(u(k))/pk)

f ′(u0)
mod p.

where f(u) = a − u2. A direct coding of this update formula for the
√

problem in Z led to the
code below where I’ve modified the algorithm to stop if the error e < 0 instead of using a lifting
bound B.

ZSQRT := proc(a,u0,p) local U,pk,k,e,uk,i;

u := mods(u0,p);

i := modp(1/(2*u0),p);

pk := p;

for k do

e := a - u^2;

if e = 0 then return(u); fi;

if e < 0 then return(FAIL) fi;

uk := mods(iquo(e,pk)*i, p);

u := u + uk*pk;

pk := p*pk;

od;

end:

The running time of the algorithm is dominated by the squaring of u in a := a - u^2 and the
long division of u by pk in iquo(e,pk). Assume the input a is of length n base p digits. At the
beginning of iteration k, u = u(k) = u0 + u1p+ ...+ uk−1p

k−1 is an integer of length at most k base
p digits. Thus squaring u costs O(k2) (assuming classical integer arithmetic). In the division of e
by pk = pk, e will be an integer of length n base p digits. Assuming classical integer long division
is used, this division costs O((n − k + 1)k). Since the loop will run k = 1, 2, ..., n/2 for the

√

problem the total cost of the algorithm is dominated by
∑n/2

k=1(k
2 + (n− k + 1)k) ∈ O(n3).

Redesign the algorithm so that the overall time complexity is O(n2) assuming classical integer
arithmetic. Prove that your algorithm is O(n2). Now implement your algorithm in Maple and verify
that it works correctly and that the running time is O(n2). Use the prime p = 9973.

Hint 1: e = a− (u(k))2 = a− (u(k−1) + uk−1p
k−1)

2
= (a− (u(k−1))2)− 2uk−1uk−1p

k−1− u2k−1p2k−2.
Notice that a− (u(k−1))2 is the error that was computed in the previous iteration.
Hint 2: We showed that the algorithm for computing the p-adic (base p) representation of an integer
is O(n2). Notice that it does not divide by pk, rather, it divides by p each time round the loop.

2

Question 4 (15 marks): Symbolic Integration

Implement a Maple procedure INT (you may use Int if you prefer) that evaluates antiderivatives∫
f(x)dx. For a constant c and positive integer n your Maple procedure should apply∫

c dx = cx.∫
cf(x) dx→ c

∫
f(x) dx.∫

f(x) + g(x) dx→
∫
f(x) dx+

∫
g(x) dx.

For c 6= 1

∫
xc dx =

1

c+ 1
xc+1.∫

x−1 dx = lnx.∫
ex dx = ex and

∫
lnx dx = x lnx− x.∫

xnex dx→ xnex −
∫
nxn−1ex dx.∫

xn lnx dx by parts.

You may ignore the constant of integration. NOTE: ex in Maple is exp(x), i.e. it’s a function
not a power. HINT: use the diff command for differentiation to determine if a Maple expression
is a constant wrt x. Test your program on the following.

> INT(x^2 + 2*x + 1, x);

> INT(x^(-1) + 2*x^(-2) + 3*x^(-1/2), x);

> INT(exp(x) + ln(x) + sin(x), x);

> INT(2*f(x) + 3*y*x/2 + 3*ln(2), x);

> INT(x^2*exp(x) + 2*x*exp(x), x);

> INT(2*exp(-x) + ln(2*x+1), x);

> INT(4*x^3*ln(x) + 3*x^2*ln(x), x);

3

Question 5: 10 marks

Below is some code for the FFT for Assignment 3. The code takes as input an array A and assumes
it is indexed from 0..n−1. It allocates two temporary arrays B and C of size n/2 and it overwrites
the input A with the output (the input is destroyed).

unprotect(FFT);

FFT := proc(n,A,p,w) local n2,B,C,i,wi,T;

if n=1 then return; fi;

n2 := n/2;

B := Array(0..n2-1);

C := Array(0..n2-1);

for i from 0 to n2-1 do

B[i] := A[2*i];

C[i] := A[2*i+1];

od;

FFT(n2,B,p,w^2 mod p);

FFT(n2,C,p,w^2 mod p);

wi := 1;

for i from 0 to n2-1 do

T := wi*C[i] mod p;

A[i] := B[i]+T mod p;

A[n2+i] := B[i]-T mod p;

wi := w*wi mod p;

od;

return;

end:

(a) Many of you wrote code which allocates temporary arrays like this. Maple deallocates unused
temporary arrays when it does a garbage collection. Allocating and deallocating arrays is not
free. It takes time. Let us count the number of arrays allocated. Let A(n) be the number of
arrays allocated. Write down a recurrence for the A(n) and initial value and solve it by hand.

(b) How much space is allocated by all these temporary arrays? Let S(n) be the number of words
of storage allocated by all the temporary arrays. Assuming an array of size n uses n+c words
of storage where the constant c is the number of words to store the size of the array and any
other information that Maple needs, and n is for the n entries (integers) in the array. Write
down a recurrence relation for S(n) and solve it using Maple’s rsolve command.

It is possible to redesign the algorithm so that it only needs only one temporary array T of size n.
The idea is pass T as an input to the FFT procedure. One can then use the first half of T for the
B array and the second half of T for the C array. Then, in the two recursive calls to the FFT, one
can use the input array A as temporary space.

4

