MACM 401/MATH 701/MATH 801
 Assignment 1, Spring 2023.

Michael Monagan

This assignment is to be handed in by 11pm Monday January 23rd.
Do each question separately on paper or in a Maple worksheet or on a tablet.
If you use paper, take a photo of your work with your phone or scan it. If you use a tablet, export your work to a .pdf file. For problems involving Maple calculations and Maple programming, export the Maple worksheet to a .pdf file.

You will upload your assignment to Crowdmark. You will be sent an Email with a link from Crowdmark. Upload your solution to each question to a separate Crowdmark box.

Late penalty: -20% for up to 24 hours late. Zero after that.

Question 1 (15 marks): Karatsuba's Algorithm

Reference: Algorithm 4.2 in the Geddes text.
(a) By hand, calculate 8484×3829 using Karatsuba's algorithm. You will need to do three multiplications involving two digit integers. However, one of the multiplications will be trivial. For the other two, 84×38 and 84×29, use Karatsuba's algorithm recursively.
(b) Let $T(n)$ be the time it takes to multiply two n digit integers using Karatsuba's algorithm. Assume (for simplicity) that $n=2^{k}$ for some $k>0$. Then for $n>1$, we have $T(n) \leq$ $3 T(n / 2)+c n$ for some constant $c>0$ and $T(1)=d$ for some constant $d>0$.
First show that $3^{k}=n^{\log _{2} 3}$. Now solve the recurrence relation and show that $T(n) \leq$ $(2 c+d) n^{\log _{2} 3}-2 c n$ thus concluding that $T(n) \in O\left(n^{\log _{2} 3}\right)=O\left(n^{1.585}\right)$. Show your working.
(c) Show that $T(2 n) / T(n) \sim 3$, that is, if we double the length of the integers then the time for Karatsuba's algorithm increases by a factor of 3 (for large n).

Question 2 (10 marks): Using Maple as a Calculator

(a) Use Maple to calculate and simplify the following sums

$$
\sum_{k=1}^{n} k^{2}, \quad \sum_{k=1}^{n} k^{3}, \quad \sum_{k=1}^{n}\binom{n}{k} \text { and } \quad \sum_{k=1}^{n} k\binom{n}{k}
$$

The geometric sums

$$
\sum_{k=0}^{\infty} q^{k} \text { and } \sum_{k=0}^{\infty}(k+1) q^{k}
$$

converge for $|q|<1$. To evaluate these sums in Maple, use the following functionality in Maple to tell Maple that $|q|<1$.
$>\operatorname{sum}(\ldots)$ assuming $q>-1$ and $q<1$;
(b) Use Maple's rsolve command to solve the following recurrences.

$$
\begin{gather*}
a_{n}=2 a_{n-1}+1 \text { with } a_{1}=1 \tag{1}\\
f(n)=f(n-1)+f(n-2) \text { with } f(0)=0, f(1)=1 \tag{2}\\
T(n)=4 T(n / 2)+c n \text { with } T(1)=d . \tag{3}
\end{gather*}
$$

See the Maple help page for rsolve for examples. For the Fibonacci recurrence in (2), you will get a formula

$$
\begin{equation*}
-\frac{\sqrt{5}\left(-\frac{\sqrt{5}}{2}+\frac{1}{2}\right)^{n}}{5}+\frac{\sqrt{5}\left(\frac{\sqrt{5}}{2}+\frac{1}{2}\right)^{n}}{5} \tag{4}
\end{equation*}
$$

that does not look like it is integer valued. Evaluate (4) at $n=4$ and check that the result simplifies to 3 .

Question 3 (10 marks): The binary GCD algorithm

Implement the binary GCD algorithm in Maple as the Maple procedure named BINGCD to compute the GCD of two positive integers a and b. Use the Maple functions irem (a, b) and iquo (a, b) for dividing by 2 .

Your Maple code will have a main loop in it. Each time round the loop please print out current values of (a, b) using the command

```
printf("a=%d b=%d\n",a,b);
```

so that you and I can see the algorithm working. Test your procedure on the integers $a=16 \times 3 \times 101$ and $b=8 \times 3 \times 203$.

Question 4 (25 marks): The Gaussian Integers

Let G be the subset of the complex numbers \mathbb{C} defined by $G=\{x+y i: x, y \in \mathbb{Z}, i=\sqrt{-1}\}$. G is called the set of Gaussian integers and is usually denoted by $\mathbb{Z}[i]$.
(a) (6 marks) Why is G an integral domain? What are the units in G ?

Let $a, b \in G$ with $b \neq 0$. In order to define the remainder of $a \div b$ we need a measure $v: G \rightarrow \mathbb{N}$ for the size of a non-zero Gaussian integer. We cannot use $v(x+i y)=|x+i y|=\sqrt{x^{2}+y^{2}}$ because it is not an integer valued function. Use $N(x+i y)=x^{2}+y^{2}$ for $v(x+i y)$.
(b) (4 marks) Show that for $a, b \in G, N(a b)=N(a) N(b)$.

Show that for $a, b \in G$ with $b \neq 0, N(a b) \geq N(a)$.
(c) (9 marks) Let $a, b \in G$ with $b \neq 0$. Find a definition for the quotient q and remainder r satisfying $a=b q+r$ with $r=0$ or $v(r)<v(b)$ where $v(x+i y)=N(x+i y)=x^{2}+y^{2}$. Note, you must prove that your choice for q and r satisfies $r=0$ or $v(r)<v(b)$. Then since part (b) shows $v(a b) \geq v(b)$ this establishes that G is a Euclidean domain. Using your definition calculate the quotient and remainder of $a=63+10 i$ divided by $b=7+43 i$.

Hint: if $a=b q+r$ and $b \neq 0$ then $a / b-q=r / b$. Try choosing q so that $|a / b-q|$ is small.
(d) (6 marks) Write a Maple procedure REM such that REM (a, b) computes the remainder r of a divided b using your definition from part (c). Now compute the gcd of $a=63+10 i$ and $b=7+43 i$ using the Euclidean algorithm and your REM procedure. You should get $2+3 i$ up to multiplication by a unit. Also, test your procedure on $a=330$ and $b=-260$.
Note, in Maple I is the symbol used for the complex number i and you can use the Re and Im commands to pick off the real and imaginary parts of a complex number. Also, the round function may be useful. For example
> a := 2+5/3*I;

$$
\text { a }:=2+5 / 3 \mathrm{I}
$$

$>\operatorname{Re}(\mathrm{a})$;
$>\operatorname{Im}(\mathrm{a}) ;$
> round(a);

$$
2+2 I
$$

Question 5 (15 marks): Algorithm Complexity

(a) For a constant $c>0$ and function $f: \mathbb{N} \rightarrow \mathbb{R}$ show that $O(c f(n))=O(f(n))$.

It is sufficient to show (i) $c f(n) \in O(f(n))$ and (ii) $f(n) \in O(c f(n))$.
(b) Show that $O\left(\log _{a} n\right)=O\left(\log _{b} n\right)$. The easiest way to do this is to convert both logarithms to base e using $\log _{a} n=\frac{\log _{e} n}{\log _{e} a}=\frac{\ln n}{\ln a}$.
(c) Let \mathbb{Z}_{p} denote the field of integers modulo p a prime. I think Maple's command GCD (A,B) mod p; uses the Euclidean algorithm to compute the GCD of two polynomials $A(x)$ and $B(x)$ in the ring $\mathbb{Z}_{p}[x]$. [We will show later that for two polynomials $A(x)$ and $B(x)$ of degree d, the Euclidean algorithm does $O\left(d^{2}\right)$ arithmetic operations in \mathbb{Z}_{p}.] Let's see if this could true by timing Maple's $\operatorname{Gcd}(\mathrm{A}, \mathrm{B}) \bmod \mathrm{p}$; command to see if the times are quadratic in d. Execute the following code in Maple. Are the timings you get quadratic in d ? Justify your answer. Hint: if $T(d)$ is the time and $T(d)$ is quadratic in d, what should $T(2 d) / T(d)$ approach when d large?

```
d := 1000;
p := prevprime(2^30);
for i to 7 do
    A := Randpoly(d,x) mod p;
    B := Randpoly(d,x) mod p;
    st := time();
    G := Gcd(A,B) mod p;
    tt := time()-st;
    printf("deg=%d G=%a time=%7.3fsecs \n",d,G,tt);
    d := 2*d;
od:
```

