This assignment is to be handed in on Tuesday September 30th at the beginning of class. Late penalty: −20% for up to 24 hours late, zero after that.

Q1: Suppose we use the One-Time-Pad to encrypt one bit with key $K \in \{0, 1\}$. Show that if $\Pr(K = 0) \neq 1/2$ then the One-Time-Pad does NOT have perfect secrecy.

Q2: Below are permutations for two 4-bit S-boxes. They are permutations of the numbers 0, 1, 2, ..., 15. One is a linear function of the vectors 0000, 0001, ..., 1111 and the other is not. For the linear one, find the matrix A and vector b s.t. $S(x) = Ax + b$. For the non-linear one, prove that it is non-linear.

$$
\begin{align*}
3 & 1 & 7 & 5 & 10 & 8 & 14 & 12 & 2 & 0 & 6 & 4 & 11 & 9 & 15 & 13 \\
9 & 14 & 15 & 5 & 2 & 8 & 12 & 3 & 7 & 0 & 4 & 10 & 1 & 13 & 11 & 6
\end{align*}
$$

Q3 (exercise 3.1). Let y be the output of Algorithm 3.1 on input x

$$y = \text{SPN}(x, \pi, S, K^1, K^2, ..., K^{N+1})$$

where π is a permutation, S is a substitution, and $(K^1, ..., K^{N+1})$ is the key schedule. Determine how to use the same algorithm to invert y, i.e. what do $(L^{N+1}, L^N, ..., L^1)$ need to be so that

$$\text{SPN}(y, \pi^{-1}, S^{-1}, L^{N+1}, L^N, ..., L^1) = x ?$$

Q4: Implement algorithm 3.1 $\text{SPN}(x, S, P, K^1, K^2, ..., K^{N+1})$. Test your algorithm by using it to check the example on page 77 with $x = 0010011010110111$. You should get $y = 1011100110110110$. Please print out also the intermediate values of u, v, w. Note, I suggest you use lists to represent a vector of bits. If w and k are two lists in Maple then you can add them mod 2 directly using $w + k \text{mod} 2$ in Maple. Check that your answer to Q2 is correct by inverting y to get x.

Chapter 5 exercises 5.3(a), 5.6, 5.8, 5.10, 5.12, 5.15.
For problem 5.3 execute the extended Euclidean algorithm by hand.
For exercise 5.12 decrypt the first 5 rows of Table 5.1 only.