MATH 152 Assignment 3, Fall 2022.

Michael Monagan

Webassign Exercises

- 6.5 Exercises 2, 9.
- 7.1 Exercises 1, 3, 11, 19, 28.For 19 and 28 you need to apply integration by parts more than once.
- 7.2 Exercises 2, 10, 19, 41.
- 7.3 Exercises 4, 12, 15.Use the integration tables in the textbook see REFERENCE pages 6 and 7.

Written Exercises

- 1 (Section 6.5) Calculate the average of f(x) = 1/x on [1,3] and find a value c on [1,3] such that f(c) is the average.
- 2 (Section 7.1) Prove the reduction formula $\int (\ln x)^n dx = x(\ln x)^n n \int (\ln x)^{n-1} dx$ by differentiation! Then use it to calculate $\int (\ln x)^2 dx$. Now do Section 7.1 Exerise 65(b).
- 3 (Section 7.1) Calculate $\int x \sin x \cos x \, dx$. Simplify the integrand then use integration by parts.
- 4 (Section 7.2) Two functions f(x) and g(x) are said to be orthogonal on [a, b] if $\int_a^b f(x)g(x)dx = 0$. Show that $\sin 2x$ and $\cos 3x$ are orthogonal on $[-\pi, \pi]$.
- 5 (Section 7.2) Find the volume obtained by rotating $y = \sin x$ for $0 \le x \le \pi$ about the x axis.
- 6 Section 7.3 exercise 4. Use a trigonometric substitution.
- 7 Section 7.3 exercise 12. Use a trigonometric substitution.
- 8 (Section 7.3) Calculate $\int_0^1 2x\sqrt{1-x^4} dx$. First use the substitution $u = x^2$. Then use a trigonometric substitution. You should get $\pi/4$.