MATH 152 Assignment 4, Fall 2022.

Michael Monagan

Webassign Exercises

7.4 Exercises 7, 10, 19, 26.
7.5 Exercises 1, 3, 8, 13.
7.7 Exercises 14, 30.
7.8 Exercises 1, 9, 11, 20.

Written Exercises

1 (Section 7.4) Calculate $\int_{0}^{1} \frac{x-4}{x^{2}-5 x+6} d x$. I get $\ln 3-3 \ln 2$.
2 (Section 7.4) Calculate $\int \frac{2+2 x-x^{2}}{x^{3}-1} d x$. I get $\ln |x-1|-\ln \left|x^{2}+x+1\right|+C$.
3 (Section 7.5) Calculate $\int \ln \left(1+x^{2}\right) d x$. First use integration by parts to get rid of the logarithm.
4 (Section 7.5) Calculate $\int d x /\left(1+e^{x}\right)$. First use a substitution.
5 Section 7.7 Exercise 21. To save some work for part (a), use $n=6$ not $n=10$.
You should get $T_{6}=1.954097, M_{6}=2.023030$ and $S_{6}=2.000863$.
The answers to part (c) are in the back of the textbook. Show you working.
6 (Section 7.7) There is a relation between the Trapezoidal rule T_{n}, the Midpoint rule M_{n} and Simpson's rule S_{n}, namely,

$$
\frac{1}{3} T_{n}+\frac{2}{3} M_{n}=S_{2 n}
$$

Verify this for $n=1$.
7 (Section 7.8) Evaluate the improper integral $\int_{1}^{\infty} \frac{d x}{x^{2}+x}$.
Note, it must be convergent because $\frac{1}{x^{2}+x}<\frac{1}{x^{2}}$ for $x \geq 1$ and $\int_{1}^{\infty} \frac{d x}{x^{2}}=1$.
8 (Section 7.8) Evaluate the improper integral $\int_{0}^{1} t \ln t d t$.

Midterm 2 is on Friday October 28th at 8:30am.

It covers the material covered on Assignments 3 and 4 which is Sections 6.5, 7.1-7.5, 7.7, and 7.8.

