Webassign Exercises

5.4 Exercises 5, 15, 32, 59, 71
5.5 Exercises 1, 2, 4, 59
6.1 Exercises 13, 16, 17, 61
6.2 Exercises 5, 11, 19

Written Exercises

1 (Section 5.3)
(a) State the Fundamental Theorem of Calculus part 2.
(b) Let $f(x)$ and $g(x)$ be continuous on $[a, b]$. Apply the Fundamental Theorem of Calculus part 2 to show that

$$
\int_{a}^{b}(f(x)+g(x)) d x=\int_{a}^{b} f(x) d x+\int_{a}^{b} g(x) d x
$$

Hint: let $F(x)$ be an antiderivative of $f(x)$ and $G(x)$ be an antiderivative of $g(x)$.
2 (Section 5.4) Show that $\int \cos (x)^{2} d x=\frac{1}{2} x+\frac{1}{4} \sin 2 x+C$ by differentiating both sides and using the trig identities $\sin 2 A=2 \sin A \cos A$ and $\cos 2 A=2 \cos (A)^{2}-1$.

3 (Section 5.4) Water flows out of a storage tank at a rate of $r(t)=100-10 t$ litres per minute. Find the amount of water that flows out of the tank during $0 \leq t \leq 10$.

4 (Section 5.5) Calculate $\int \cot x d x$. Use $\cot x=\frac{\cos x}{\sin x}$ and make a substitution.
5 (Section 5.5) Use a substitution to show that $\int_{0}^{4} e^{-\sqrt{x}} d x=\int_{0}^{2} 2 x e^{-x} d x$.
6 (Section 6.1) Let A be the area between $f(x)=3-x^{2}$ and $g(x)=x^{2}-1$. Sketch A then express A as a definite integral then calculate A using the FTC.

7 Let V be the volume of a cone of height h with a base of radius r. Show that $V=\frac{1}{3} \pi r^{2} h$ by expressing V the volume of revolution about the x axis and evaluating the integral that you get.

8 (Section 6.2) Consider two spheres both of radius r which are placed on the x axis with the centre of the first sphere at $x=0, y=0$ and the centre of the second sphere at $x=r, y=0$ so that they intersect each other. Show that the volume in common is $\frac{5}{12} \pi r^{3}$.
Sketch the two spheres and the volume to be calculated first.

Midterm 1 is on Friday February 2nd in class.

It covers the material covered on Assignments 1 and 2 which is Sections 4.9, 5.1-5.5, 6.1, and 6.2.

