MATH 340 Assignment 5, Fall 2007

Michael Monagan

This assignment is due Friday November 2nd at the beginning of class.
For problems involving Maple please submit a printout of a Maple worksheet.
Late penalty: -20% for up to 24 hours late. Zero for more than 24 hours late.

Polynomial Interpolation

1 Interpolate the data points $(1,1),(2,-1),(0,2)$ in \mathbb{Z}_{7}^{2} using
(i) Newton interpolation and (ii) using Lagrange interpolation.

2 Let F be a field and let $x_{1} \neq x_{2} \neq \ldots \neq x_{n} \in F$.
Prove that the n Lagrange polynomials

$$
L_{i}=\frac{\prod_{j=1}^{n}\left(x-x_{j}\right)}{x-x_{i}}, \quad 1 \leq i \leq n
$$

are linearly independent in $F[x]$.

Section 2.5: Irreducible Polynomials

Exercises 1, 2, 6, 9, 10.
Do questions 1, 2 and 9 by hand. Use Maple to answer question 10 .

Complex numbers

1. Let $i=\sqrt{-1}, a=(2+3 i)$ and $b=(1-2 i)$. Calculate $a+b, a b$ and a / b.
2. Convert $a=2-2 i$ and $b=2 i$ to polar co-ordinates and calculate $a^{2}, a b$ and a / b in polar form. By hand, draw the points $a, b, a^{2}, a b$ and a / b in the complex plane.
3. Let $z_{1}=r(\cos \theta+i \sin \theta)$ and $z_{2}=s(\cos \omega+i \sin \omega)$.

Show that $z_{1} / z_{2}=r / s[\cos (\theta-\omega)+i \sin (\theta-\omega)]$.
4. Let $\mathbb{Z}[i]=\left\{a+b i: a, b \in \mathbb{Z}\right.$ and $\left.i^{2}=-1\right\}$ and let addition and multiplicaton in $\mathbb{Z}[i]$ be defined as for \mathbb{C}. The set $\mathbb{Z}[i]$ is called the set of Gaussian integers. Prove that $\mathbb{Z}[i]$ is a subring of \mathbb{C}. See Lemma 2.2.4.

The Fundamental Theorem of Algebra

1. By hand, calculate the real and complex eigenvalues AND eigenvectors of the matrix

$$
\left[\begin{array}{ccc}
0 & 1 & 0 \\
-1 & 0 & 1 \\
0 & 0 & 1
\end{array}\right]
$$

2. Using Maple, factor the polynomials $x^{4}-3 x^{2}+1$ and $x^{4}+x^{2}+1$ over \mathbb{Q}. Then determine all real and complex roots by applying the quadratic formula by hand.
3. Determine all real and complex roots of the polynomials $x^{4}+3 x^{2}+1$ and $x^{5}-1$ in Maple using both the solve and fsolve commands.
Observe that $f(a+b i)=0 \Longrightarrow f(a-b i)=0$.
