MATH 340 Bonus Assignment, Fall 2007

Michael Monagan

Each question is worth a 1% bonus towards your final mark.
This assignment is due Monday December 10th at 1:00pm.
Late penalty: -20% for up to 24 hours late. Zero for more than 24 hours late. For problems involving Maple please submit a printout of a Maple worksheet.

Question 1: The Extended Euclidean Algorithm

Let F be a field and $a(x)$ and $b(x)$ be non-zero polynomials in $F[x]$.
The Euclidean Algorithm computes the sequence of polynomials

$$
r_{0}=a, r_{1}=b, r_{i}=r_{i-2}-r_{i-1} q_{i} \text { for } i=2,3, \ldots, n+1
$$

where q_{i} is the quotient of r_{i-2} divided r_{i-1} and $r_{n+1}=0$.
The Extended Euclidean Algorithm also computes the polynomials

$$
\begin{gathered}
\lambda_{0}=1, \lambda_{1}=0, \lambda_{i}=\lambda_{i-2}-\lambda_{i-1} q_{i} \text { for } i=2,3, \ldots, n+1 \text { and } \\
\mu_{0}=0, \mu_{1}=1, \mu_{i}=\mu_{i-2}-\mu_{i-1} q_{i} \text { for } i=2,3, \ldots, n+1 .
\end{gathered}
$$

Prove, by induction on i, that $\lambda_{i}(x) a(x)+\mu_{i}(x) b(x)=r_{i}(x)$ for $0 \leq i \leq n+1$.

Question 2: Cyclotomic Polynomials

Let ω be a primitive n 'th root of unity in \mathbb{C}. The minimial polynomial for ω is called the n 'th cyclotomic polynomial. It is denoted by $\Phi_{n}(x)$. For example, since $x^{3}-1=(x-1)\left(x^{2}+x+1\right)$, we have $\Phi_{1}(x)=x-1$ and $\Phi_{3}(x)=x^{2}+x+1$.

Apply the theorem in the handout to compute $\Phi_{n}(x)$ for $n=6,10,15,21,35$, and 105 . Do the divisions in Maple using the divide command.

Check that $\Phi_{n}(x)$ is irreducible - it should be one of the irreducible factors of $x^{n}-1$. It may be helpful to factor the polynomial $x^{n}-1$ so that you can check your results.

Question 3: Primitive n 'th roots of unity in finite fields.

Let α be a primitive element in the finite field $\mathrm{GF}(q)$ with q elements.
In Assignment 7 you proved that α^{j} is a primitive element $\Leftrightarrow \operatorname{gcd}(j, q-1)=1$.
(a) Suppose $n \in \mathbb{N}$ and $n \mid q-1$. Prove that α^{j} has order $n \Leftrightarrow \operatorname{gcd}(j, q-1)=(q-1) / n$.

This result gives us a simple way to determine all elements in $\operatorname{GF}(q)$ of a given order n once we have a primitive element α. Now, if $\beta \in G F(q)$ has order n, this means $\beta^{n}=1$ hence β is a root of $x^{n}-1$ and hence β is an n 'th root of unity. And since $\beta^{j} \neq 1$ for $0<j<n, \beta$ is a primitive n 'th root of unity in the finite field $G F(q)$.
(b) Recall that $x^{8}-1=\left(x^{4}-1\right)\left(x^{4}+1\right)$ and hence the four primitive 8^{\prime} th roots of unity are the roots of $x^{4}+1$. Using the result above, find the four primitive 8^{\prime} th roots of unity in the following finite fields by first finding a primitive element α in the field and then computing the appropriate powers of α. Use Maple where appropriate.

1. \mathbb{Z}_{17},
2. $G F(25)=\mathbb{Z}_{5}[y] /\left(y^{2}+2\right)$ and
3. $G F(81)=\mathbb{Z}_{3}[y] /\left(y^{4}+y+2\right)$.

Question 4: The Quaternion Group

The quaternion group Q_{8} is the subset of 2 by 2 invertible matrices over \mathbb{C} generated by

$$
A=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right] \quad B=\left[\begin{array}{ll}
0 & i \\
i & 0
\end{array}\right]
$$

Find the 8 elements of Q_{8} by multiplying the above matrices (repeatedly) and calculate the order of all elements of Q_{8}. Explain why Q_{8} is not isomorphic to $\mathbb{Z}_{8}(+)$ and why Q_{8} is not isomorphic to D_{4} the set of rotational symmetries of the square.

Note, you can create the two matrices in Maple by doing

```
> A := Matrix([[0,+1],[-1,0]]);
> B := Matrix([[0,+I],[+I,0]]);
```

and multiply matrices using

```
> A.B;
```

