The Cyclotomic Polynomials

Definition: Let $n \in \mathbb{N}$ and $\omega_1, \omega_2, ..., \omega_{\phi(n)}$ be the *n*'th primitive roots of unity. The *n*'th cyclotomic polynomial is the polynomial

$$\Phi_n(x) = \prod_{i=1}^{\phi(n)} (x - \omega_i).$$

Here are the first few cyclotomic polynomials.

n	$x^n - 1$	$\Phi_n(x)$
1	x-1	x-1
2	$x^2 - 1 = (x - 1)(x + 1)$	x + 1
3	$x^3 - 1 = (x - 1)(x^2 + x + 1)$	$x^2 + x + 1$
4	$x^4 - 1 = (x^2 - 1)(x^2 + 1)$	$x^2 + 1$
5	$x^{5} - 1 = (x - 1)(x^{4} + x^{3} + x^{2} + x + 1)$	$x^4 + x^3 + x^2 + x + 1$
6	$x^{6} - 1 = (x^{3} - 1)(x + 1)(x^{2} - x + 1)$	$x^2 - x + 1$

One way to compute $\Phi_n(x)$ is to use of the following result.

Theorem 1:
$$\Phi_n(x) = (x^n - 1)/(\prod_{d|n,d < n} \Phi_d(x)).$$

E.g. $\Phi_{10}(x) = \frac{x^{10} - 1}{\Phi_1(x)\Phi_2(x)\Phi_5(x)} = \frac{x^{10} - 1}{(x - 1)(x + 1)(x^4 + x^3 + x^2 + x + 1)} = x^4 - x^3 + x^2 - x + 1.$

Theorem 1 implies that $\Phi_n(x)$ is monic with integer coefficients. It turns out that $\Phi_n(x)$ is irreducible over \mathbb{Q} . For $1 \leq n \leq 6$, you can see from the above table that the coefficients are all 1 or -1. This is not true for larger n.

Theorem 2: Let $H_n \in \mathbb{Z}$ be the largest coefficient in $\Phi_n(x)$. Then

n	$\mid H_n$	$\log_2 H_n$
$1,\!181,\!895$	14102773	23.7
43,730,115	862550638890874931	59.6
$1,\!880,\!394,\!945$	64540997036010911566826446181523888971563	135.6