The Cyclotomic Polynomials

Definition: Let $n \in \mathbb{N}$ and $\omega_{1}, \omega_{2}, \ldots, \omega_{\phi(n)}$ be the n 'th primitive roots of unity. The n 'th cyclotomic polynomial is the polynomial

$$
\Phi_{n}(x)=\Pi_{i=1}^{\phi(n)}\left(x-\omega_{i}\right) .
$$

Here are the first few cyclotomic polynomials.

n	$x^{n}-1$	$\Phi_{n}(x)$
1	$x-1$	$x-1$
2	$x^{2}-1=(x-1)(x+1)$	$x+1$
3	$x^{3}-1=(x-1)\left(x^{2}+x+1\right)$	$x^{2}+x+1$
4	$x^{4}-1=\left(x^{2}-1\right)\left(x^{2}+1\right)$	$x^{2}+1$
5	$x^{5}-1=(x-1)\left(x^{4}+x^{3}+x^{2}+x+1\right)$	$x^{4}+x^{3}+x^{2}+x+1$
6	$x^{6}-1=\left(x^{3}-1\right)(x+1)\left(x^{2}-x+1\right)$	$x^{2}-x+1$

One way to compute $\Phi_{n}(x)$ is to use of the following result.
Theorem 1: $\Phi_{n}(x)=\left(x^{n}-1\right) /\left(\Pi_{d \mid n, d<n} \Phi_{d}(x)\right)$.
E.g. $\Phi_{10}(x)=\frac{x^{10}-1}{\Phi_{1}(x) \Phi_{2}(x) \Phi_{5}(x)}=\frac{x^{10}-1}{(x-1)(x+1)\left(x^{4}+x^{3}+x^{2}+x+1\right)}=x^{4}-x^{3}+x^{2}-x+1$.

Theorem 1 implies that $\Phi_{n}(x)$ is monic with integer coefficients. It turns out that $\Phi_{n}(x)$ is irreducible over \mathbb{Q}. For $1 \leq n \leq 6$, you can see from the above table that the coefficients are all 1 or -1 . This is not true for larger n.

Theorem 2: Let $H_{n} \in \mathbb{Z}$ be the largest coefficient in $\Phi_{n}(x)$. Then

n	H_{n}	$\log _{2} H_{n}$
$1,181,895$	14102773	23.7
$43,730,115$	862550638890874931	59.6
$1,880,394,945$	64540997036010911566826446181523888971563	135.6

