MATH 340 Assignment 3, Fall 2008

Michael Monagan

This assignment is to be handed in on Monday October 6th by 11:00am.
Late penalty: -20% for handing in by 9:30am Tuesday October 7th. Zero after that.

Section 1.7: Equations in \mathbb{Z}_{n}

Exercise 14.
Read Lemma 1.7 .5 which says the following. If $[a]$ and $[b]$ are invertible in \mathbb{Z}_{n} then their product $[a][b]$ is invertible in \mathbb{Z}_{n}. Rewrite the proof using [] notation instead of \equiv notation.

Prove Corollary 1.7.6 parts (i) and (ii) on page 39.
Note that our textbook uses $(a, b)=1$ to mean $\operatorname{gcd}(a, b)=1$.

Section 1.10: Euler's ϕ-function

Exercise 3, 4.

Section 1.11: Theorem's of Euler and Fermat

Exercises 2, 3, 8 .

Prove Theorem 1.11.1 (Euler's theorem) using the same approach given in class to prove Theorem 1.11.3 (Fermat's little Theorem). First prove the Lemma: if $a \in \mathbb{Z}_{n}^{*}$ then $a \mathbb{Z}_{n}^{*}=\mathbb{Z}_{n}^{*}$ where \mathbb{Z}_{n}^{*} denotes the set of units in \mathbb{Z}_{n}.

Section 2.1: Basic Properties

Exercises 1, 4, 7, 10, 14, 16.
For exercise 10 , use the fact that $\mathbb{Q}[\sqrt{2}]$ is a subset of the real numbers \mathbb{R} which is a field, so that you don't have to prove all the field axioms.

