MATH 340 Assignment 3, Fall 2017 Solutions to Additional Questions

Michael Monagan

Section 1.7: Equations in \mathbb{Z}_n

Prove Lemma 1.7.9 part (i). The Lemma said Let $a, b \in \mathbb{Z}_n$. Prove that (i) $ax \equiv b \mod n$ has a solution (for x) if and only if gcd(a, n) = 1.

Proof (\Rightarrow) We have $ax \equiv b \mod n \Rightarrow ax - b \equiv 0 \mod n \Rightarrow n | ax - b$. Now let $g = \gcd(a, n)$. Now g|n and n|ax - b implies g|ax - b. But g|a so g|b as required.

Proof (\Leftarrow) One of the students found this proof that I liked – it's better than mine. Let $g = \gcd(a, n)$. Then there exist integers y, z such that

ay + nz = g

from the extended Euclidean algorithm. Now we are given g|b so let b = gq for some integer $q \in \mathbb{Z}$. Multiplying this equation by q gives

aqy + nqz = b.

Taking this modulo n gives

 $a(qy) \equiv b \mod n.$

Thus the integer x = qy satisfies the equation $ax \equiv b \mod n$. This proof is contructive!

Section 1.11: Theorem's of Euler and Fermat

Prove Theorem 1.11.1 (Euler's theorem) using the same approach given in class to prove Theorem 1.11.3 (Fermat's little Theorem). First prove the Lemma: if $a \in \mathbb{Z}_n^*$ then $a\mathbb{Z}_n^* = \mathbb{Z}_n^*$ where \mathbb{Z}_n^* denotes the set of units in \mathbb{Z}_n .

We know that $|\mathbb{Z}_n^*| = \phi(n)$ so let $\mathbb{Z}_n^* = \{u_1, u_2, \dots, u_{\phi(n)}\}$. Now if $a, x, y \in \mathbb{Z}_n$ satisfy ax = ay, since a is invertible, multiplying ax = ay by a^{-1} shows that x = y. Thus if $x \neq y$ then $ax \neq ay$ hence

$$a\mathbb{Z}_n^* = \{au_1, au_2, \dots, au_{\phi(n)}\} = \mathbb{Z}_n^*.$$

 So

$$au_1 \times au_2 \times \cdots \times au_{\phi(n)} = u_1 \times u_2 \times \cdots \times u_{\phi(n)}.$$

Since \mathbb{Z}_n is commutative the left-hand-side can be permuted to be

$$u_1 \times u_2 \times \cdots \times u_{\phi_n} \times a^{\phi(n)} = u_1 \times u_2 \times \cdots \times u_{\phi(n)}.$$

Now since the u_i are all in \mathbb{Z}_n^* hence invertible, we can cancel them to give

 $a^{\phi(n)} = 1$

in \mathbb{Z}_n as required.