Ideal intersection examples.

[The example in the text on page 186 where $I=\left\langle x^{2} y\right\rangle$ and $J=\left\langle x y^{2}\right\rangle$ then $I \cap J=\left\langle x^{2} y^{2}\right\rangle$.
$>\mathrm{f}:=\mathrm{x}^{\wedge} \mathrm{2}^{*} \mathrm{y}$;
$\mathrm{g}:=\mathrm{x} \mathrm{*}^{\wedge} \mathrm{V}^{\text {; }}$

$$
\begin{aligned}
& f:=x^{2} y \\
& g:=x y^{2}
\end{aligned}
$$

[The algorithm is to eliminate t from the ideal $\langle f t,(1-t) g\rangle$.
> G := Groebner[Basis] ([f*t, (1-t)*g], plex (t,x,y));

$$
G:=\left[y^{2} x^{2}, t x y^{2}-x y^{2}, x^{2} y t\right]
$$

> remove (has, G, t) ;

$$
\left[y^{2} x^{2}\right]
$$

[Consider $I=\langle x, y\rangle$ and $J=\langle x, z\rangle$. Again, clearly $I \cap J=\langle x, x z, y x, y z\rangle=\langle x, y z\rangle$
[>G:=Groebner[Basis] ([x*t, y*t, (1-t)*x, (1-t)*z], plex(t,x,y,z)); remove (has, G,t) ;

$$
\begin{gathered}
G:=[z y, x, t z-z, y t] \\
{[z y, x]}
\end{gathered}
$$

[You can also use the Polynomialldeals package which does this for you automatically. > with (PolynomialIdeals):
> J := Intersect (<x,y>, <x,z>);

$$
J:=\langle x, z y\rangle
$$

The second example in the text on page 186 is also simple because each ideal is a principal ideal except that the Groebner basis is quite big so I have not printed it.

$$
\begin{aligned}
& {\left[>\mathrm{f}:=(\mathrm{x}+\mathrm{y})^{\wedge} 4 *\left(\mathrm{x}^{\wedge} 2+\mathrm{y}\right)^{\wedge} 2^{*}(\mathrm{x}-5 * \mathrm{y})\right. \text {; }} \\
& \mathrm{g}:=(\mathrm{x}+\mathrm{y}) *\left(\mathrm{x}^{\wedge} 2+\mathrm{y}\right)^{\wedge} 3^{*}(\mathrm{x}+3 * \mathrm{y}) \text {; } \\
& f:=(x+y)^{4}\left(x^{2}+y\right)^{2}(x-5 y) \\
& g:=(x+y)\left(x^{2}+y\right)^{3}(x+3 y) \\
& {\left[\begin{array}{l}
>\mathrm{G}:=\text { Groebner[Basis] }([f * t,(1-t) * g], \operatorname{plex}(t, x, y)): \\
\mathrm{E}:=\text { remove(has, G,t); }
\end{array}\right.} \\
& E:=\left[x^{12}+2 x^{11} y-17 x^{10} y^{2}-68 x^{9} y^{3}-97 x^{8} y^{4}-62 x^{7} y^{5}-15 x^{6} y^{6}+3 x^{10} y+6 x^{9} y^{2}\right. \\
& -51 x^{8} y^{3}-204 x^{7} y^{4}-291 x^{6} y^{5}-186 x^{5} y^{6}-45 x^{4} y^{7}+3 x^{8} y^{2}+6 x^{7} y^{3}-51 x^{6} y^{4} \\
& -204 x^{5} y^{5}-291 x^{4} y^{6}-186 x^{3} y^{7}-45 x^{2} y^{8}+x^{6} y^{3}+2 x^{5} y^{4}-17 x^{4} y^{5}-68 x^{3} y^{6}-97 x^{2} y^{7} \\
& \left.-62 x y^{8}-15 y^{9}\right] \\
& \overline{=}>h:=\operatorname{factor}(E[1]) \text {; } \\
& h:=(x+3 y)(x-5 y)\left(x^{2}+y\right)^{3}(x+y)^{4}
\end{aligned}
$$

$=$ This is the $\operatorname{LCM}(f, g)$ so $\operatorname{GCD}(f, g)$ is
[> simplify ($f * g / h$);

$$
(x+y)\left(x^{2}+y\right)^{2}
$$

