[Testing ideals for primality (examples over $\boldsymbol{k}=<$)

[Since $\mathrm{G}[1]$ factors over $<$ this means I is not prime over $<$.

$$
\begin{aligned}
>\mathrm{F}:=\left[\mathrm{x}^{\wedge} 2+1, y^{\wedge} 2+1, \mathrm{z}^{\wedge} 2+1\right] & ; \\
& F:=\left[x^{2}+1, y^{2}+1, z^{2}+1\right]
\end{aligned}
$$

[> Groebner[Basis] (F,plex (x,y,z));

$$
\left[z^{2}+1, y^{2}+1, x^{2}+1\right]
$$

Notice that F is a Groebner basis for $\left\langle x^{2}+1, y^{2}+1, z^{2}+1\right\rangle$ wrt. any monomial ordering by Proposition 4 of 2.9 since the leading monomials of the generators are x^{2}, y^{2}, z^{2} for any monomial ordering. Let's try a linear transformation on the ideal / of the form

$$
y / y+a x, z / z+b x+c y .
$$

$>F \mathrm{Ft}:=\operatorname{subs}\left(\mathrm{y}=\mathrm{y}+3 \mathrm{*}_{\mathrm{x}}, \mathrm{z}=\mathrm{z}+5 \mathrm{~F}_{\mathrm{x}}, \mathrm{F}\right)$;

$$
F t:=\left[x^{2}+1,(y+3 x)^{2}+1,(z+5 x)^{2}+1\right]
$$

$>$ Gt $:=$ Groebner[Basis] (Ft,plex $(\mathbf{x}, \mathrm{y}, \mathrm{z})) ;$
$G t:=\left[z^{4}+52 z^{2}+576,-y z^{3}+40 y^{2}-76 y z-320, z^{3}+240 x+76 z\right]$
[> factor (Gt[1]);

$$
\left(z^{2}+16\right)\left(z^{2}+36\right)
$$

[> Ft : $=\operatorname{subs}(\mathrm{y}=\mathrm{y}+3 * \mathrm{x}, \mathrm{z}=\mathrm{z}+5 * \mathrm{x}-3 * \mathrm{y}, \mathrm{F})$;

$$
F t:=\left[x^{2}+1,(y+3 x)^{2}+1,(z+5 x-3 y)^{2}+1\right]
$$

[> Gt := Groebner[Basis] (Ft, plex (x,y,z));
$G t:=\left[z^{8}+824 z^{6}+238864 z^{4}+28590336 z^{2}+1194393600,-505 z^{7}-320432 z^{5}\right.$
$-60738160 z^{3}+7057290240 y-4785954048 z, 97 z^{7}+83384 z^{5}+26660368 z^{3}$
$+28229160960 x+4752112896 z]$
[>f:=Gt[1];

$$
f:=z^{8}+824 z^{6}+238864 z^{4}+28590336 z^{2}+1194393600
$$

The Groebner basis is of the form $[f(z), a \cdot y+g(z), b \cdot x+h(z)]$ for some constants $a, b \in \mathbb{Q}$. Thus I is prime $\Leftrightarrow f(z)$ is irreducible over \mathbb{Q}. Also I is radical $\Leftrightarrow f(z)$ is square-free (i.e., has no repeated factors).
> factor (f);

$$
\left(z^{2}+144\right)\left(z^{2}+256\right)\left(z^{2}+100\right)\left(z^{2}+324\right)
$$

[Hence we conclude I is radical but it is not prime over $<$.

