MATH 800 Assignment 1, Fall 2023

Instructor: Michael Monagan

This assignment is worth 15% of the course grade.
Please hand it in by 11pm Monday September 25th.
Late Penalty -20% off for up to 36 hours late. Zero after that.
For Maple problems, please export your Maple worksheet to a .pdf file.
If you are registered for MATH 800 please upload your work to Crowdmark.
If you are not registered you will need to Email me your work.

Question 1 : Using Maple as a calculator. [18 marks]

(a) Using Maple's integration command int calculate the following antiderivatives

$$
\int x(1-x) d x \quad \int x^{2} e^{-x} d x \text { and } \int 4 \sqrt{1-x^{2}} d x
$$

Now calculate the following definite integrals.

$$
\int_{0}^{1} x(1-x) d x \quad \int_{0}^{\infty} x^{2} e^{-x} d x \text { and } \int_{0}^{1} 4 \sqrt{1-x^{2}} d x
$$

(b) Using Maple's differentiation command diff and evaluation command eval calculate $f(0), f^{\prime}(x), f^{\prime}(0), f^{\prime \prime}(x)$ and $f^{\prime \prime}(0)$ where $f(x)=\sin (x)+\cos (x)$.
(c) Using the Maple sum and factor commands, in a Maple for loop, calculate and factor the sums

$$
\sum_{i=1}^{n} i^{k} \text { for } 1 \leq k \leq 6
$$

Note n is a parameter here so you will get formulas (polynomials) in terms of n. E.g. for $k=1$ we have $\sum_{i=1}^{n} i=1+2+3+\ldots+n=\frac{1}{2} n(n+1)$.
(d) Using a Maple while loop and the isprime command, find the first prime p greater than 1000.
(e) Using a Maple while loop and the nextprime and irem commands, find the first prime p greater than 1000 such that $p-1$ is divisible by 64 .

Question 2: Programming in Maple. [15 marks]

I want you to learn to program with arrays in Maple. A one dimensional array with n elements indexed from 1 is created with the $\operatorname{Array}(1 . . n)$ command. The entries are automatically initialized to 0 .

Suppose we have a polynomial f in x of degree d with integer coefficients. One way to represent the polynomial on a computer is with an array A of coefficients indexed from 0 to d where $A[i]$ is the coefficient of f in x^{i}. For example, given $f=3 x^{3}-5 x+6$ we may represent it as the array $A=[6,-5,0,3]$. Below I have written two Maple procedures which convert a Maple polynomial f into it's array of coefficients and back.

```
> Maple2Array := proc(f::polynom,x::name)
    local d,A,i;
        if f=0 then return Array(0..-1); fi; # the empty array
        d := degree(f,x);
        A := Array(0..d);
        for i from O to d do A[i] := coeff(f,x,i); od;
        A;
    end:
    Array2Maple := proc(A::Array,x::name)
    local r,d,i;
        r := [op(2,A)]; # range(s) for subscripts
        if nops(r)<>1 or lhs(r[1])<>0 then
            error "Array must be one dimensional and indexed from 0"
        fi;
        d := rhs(r[1]); # upper index
        add( A[i]*x^i, i=0..d );
    end:
```

Here is how these work

```
> f := 3*x^3-5*x+6;
```

$$
f:=3 x^{3}-5 x+6
$$

$$
A:=\operatorname{Array}(0 . .3,[6,-5,0,3])
$$

```
> g := Array2Maple(A,y);
```

$$
g:=3 y^{3}-5 y+6
$$

In the following A is an Array representing a polynomial f.
(a) Write a Maple procedure DEGREE such that $\operatorname{DEGREE}(A)$ returns the degree of the polynomial stored in A.
(b) Write a Maple procedure COEFF such that $\operatorname{COEFF}(A, i)$ returns the coefficient of the term of degree x^{i} of the polynomial stored in A.
(c) Write a Maple procedure DIFF such that $\operatorname{DIFF}(A)$ returns an Array containing the derivative of the polynomial stored in A.
(d) Write a Maple procedure EVAL such that $\operatorname{EVAL}(A, z)$ returns the value $f(z)$.

For $f=3 x^{3}-5 x+6$ and $A=M a p l e 2 \operatorname{Array}(f, x)$ test your procedures on $\operatorname{DEGREE}(A)$, $\operatorname{COEFF}(A, 3), \operatorname{COEFF}(A, 6), \operatorname{EVAL}(A, 2), \operatorname{DIFF}(A), \operatorname{DEGREE}(\operatorname{DIFF}(A))$ and other test examples of your choice.

Question 3 : Analysis of Algorithms [15 marks]

(a) For a constant $c>0$ and function $f: \mathbb{N} \rightarrow \mathbb{R}$ show that $O(c f(n))=O(f(n))$.

It is sufficient to show (i) $c f(n) \in O(f(n))$ and (ii) $f(n) \in O(c f(n))$.
(b) Show that $O\left(\log _{a} n\right)=O\left(\log _{b} n\right)$. The easiest way to do this is to convert both logarithms to base e using $\log _{a} n=\frac{\log _{e} n}{\log _{e} a}=\frac{\ln n}{\ln a}$.
(c) Simplify the following
(i) $2 n O(2 n+1)$
(ii) $O\left(2(n+1)^{2}+3 n\right)$,
(iii) $O\left(n^{2}\right)+n O\left(n^{2} / 3\right)$ and
(iv) $O\left(2^{n}+n^{3}\right)$.

No justification required.

Question 4: The Euclidean Algorithm [10 marks]

Given $a, b \in E$, a Euclidean domain, the extended Euclidean algorithm solves $s a+t b=g$ for $s, t \in E$ and $g=\operatorname{gcd}(a, b)$.
(a) For integers $a=99, b=28$ execute the extended Euclidean algorithm by hand. Use the tabular method presented in class that shows the values for $r_{k}, s_{k}, t_{k}, q_{k}$. Identify $b^{-1} \bmod a$.
(b) For integers $a=1234$ and $b=4321$ use Maple's igcdex command to find integers s and t such that $s a+t b=g$ where $g=1$. Identify a^{-1} modulo b. Check your answer by calculating $a^{-1} \bmod b$ in Maple.
(c) For polynomials $a=x^{3}-1$ and $b=x^{4}-1$ use Maple's gcdex command to find polynomials g, s and t in $\mathbb{Q}[x]$ such that $s a=t b=g$ where g is the monic gcd of a, b.

Question 5 : Polynomial Interpolation [27 marks]

Let F be a field and let $x \in F^{n}$ and $y \in F^{n}$ be n points. In class I presented Lagrange interpolation to interpolate the unique polynomial $f(x)$ of degree at most $n-1$ such that $f\left(x_{i}\right)=y_{i}$ for $1 \leq i \leq n$. It is based on the Lagrange basis. Let $L=\prod_{i=1}^{n}\left(x-x_{i}\right)$. The Lagrange basis is

$$
\left\{L_{i}(x)=\frac{L(x)}{x-x_{i}} \text { for } 1 \leq i \leq n .\right\}
$$

Notice that each $L_{i}(x)$ has degree $n-1$. The interpolating polynomial $f(x)$ is given by

$$
f(x)=\sum_{i=1}^{n} \alpha_{i} L_{i}(x)
$$

where the constants $\alpha_{i}=y_{i} / L_{i}\left(\alpha_{i}\right)$.
(a) Prove that the Lagrange basis polynomials $L_{i}(x)$ are linearly independent in $F[x]$.
(b) By hand, using both Newton interpolation and Lagrange interpolation, find $f(x) \in$ $\mathbb{Q}[x]$ such that $f(0)=1, f(1)=3, f(2)=4$ such that $\operatorname{deg}(f) \leq 2$.
(c) Here is how we can compute $f(x)$ using Lagrange interpolation.

Step 1 Compute $L(x)=\prod_{i=1}^{n}\left(x-x_{i}\right)$ in expanded form.
Step 2 Compute the Lagrange basis polynomials $L_{i}(x)=L(x) /\left(x-x_{i}\right)$ for $1 \leq i \leq n$.
Step 3 Compute the Lagrange coefficients $\alpha_{i}=y_{i} / L_{i}\left(x_{i}\right)$.
Step 4 Compute and output the interpolating polynomial $f=\sum_{i=1}^{n} \alpha_{i} L_{i}(x)$.
Let $T(n)$ be the number of multiplications in F that Steps 1 to 4 do. Find an exact formula for $T(n)$ and then express $T(n)$ in big O notation. Note, in step 1, each time you multiply by $x-x_{i}$, multiplication by x does not need any multiplications in F. Note that step 2 is a polynomial division in $F[x]$ whereas step 3 is a scalar division in F. For step 2 work out how many multiplications polynomial long division by $x-x_{i}$ does. Step 4 is a scalar multiplication of α_{i} by a polynomial $L_{i}(x)$ of degree $n-1$.
(d) Write a Maple procedure that implements Lagrange interpolation for $F=\mathbb{Q}$. For the polynomial multiplications in step 1 use the expand command. For the polynomial divisions in step 2 use the quo command or the divide command. Test your procedure on the example from part (b) and on $x=[1,2,3,4], y=[-1,2,7,14]$. Verify your answers by checking that $f\left(x_{i}\right)=y_{i}$ for $1 \leq i \leq n$.

