MATH 800, Assignment 6, Fall 2023

Instructor: Michael Monagan

Please hand in the assignment by 11pm Monday November 27th. Late Penalty -20% off for up to 24 hours late. Zero after that. Use Maple as needed for all questions.

Question 1: Minimal polynomials. [14 marks]

- (a) Let $\omega = \frac{1}{2} + \frac{\sqrt{3}}{2}i$. Find the minimal polynomial $m(z) \in \mathbb{Q}[z]$ for ω . Calculate ω^3 via calculating z^3 in $\mathbb{Q}[z]/m(z)$.
- (b) Using linear algebra, find the minimal polynomial $m(z) \in \mathbb{Q}[x]$ for $\alpha = 1 + \sqrt{2} + \sqrt{3}$. Using the extended Euclidean algorithm compute the inverse of α i.e. $[z]^{-1}$ in $\mathbb{Q}[z]/(m)$.
- (c) Let α be an algebraic number and m(z) be a non-zero monic polynomial in Q[z] of least degree such that m(α) = 0.
 Prove that m(z) is (i) unique and (ii) irreducible over Q.

Question 2: Algebraic numbers in Maple. [6 marks]

Let ω be a primitive 5th root of unity in \mathbb{C} .

- (a) What is the minimal polynomial for ω ? What is the minimal polynomial for ω^2 ?
- (b) Consider the following linear system

{
$$(\omega + 4)x + \omega y = 1, \ \omega^3 x + \omega^4 y = -1$$
 }

Input ω in Maple using the RootOf representation for algebraic numbers and solve the linear system using the solve command.

(c) Consider the polynomials $a, b \in \mathbb{Q}(\omega)[x]$

$$a = x^{2} + (\omega^{3} + \omega^{2} + 2\omega) x - \omega$$
 and $b = x^{2} + (-\omega^{2} + \omega) x + \omega^{2}$.

Use Maple to compute their gcd and to factor them over $\mathbb{Q}(\omega)$.

Question 3: Resultants [6 marks]

- (a) For $a, b, c \in k[x]$, k a field show that $res(a, b \cdot c, x) = res(a, b, x) \cdot res(a, c, x)$.
- (b) For $a = x^4 + x^3 + x^2 + x + 1$, $b = x^2 2$, $c = x^2 3$ use Maple's resultant command to verify that $res(a, b \cdot c, x) = res(a, b, x) \cdot res(a, c, x)$.

Question 4: Primitive elements [14 marks]

(a) Let α_1 have minimal polynomial $z_1^2 - 3$ and α_2 have minimal polynomial $z_2^2 + z_2 + 1$. Use Maple to show that $z_2^2 + z_2 + 1$ is irreducible over $\mathbb{Q}(\alpha_1)$. Hence dim $(\mathbb{Q}(\alpha_1, \alpha_2)) = \deg(m_1, z_1) \times \deg(m_2, z_2) = 4$ and $B = [1, z_1, z_2, z_1 z_2]$ is the standard basis for the quotient ring $R = \mathbb{Q}[z_1, z_2]/\langle m_1, m_2 \rangle$.

Let $C_B : R \to \mathbb{Q}^4$ be the co-ordinate vector operation. E.g. $C_B(2 + 3z_1 + 4z_1z_2) = [2,3,0,4]^T$. Let $\gamma = z_1 + z_2$. Compute the matrix A whose *i*th column is $C_B(\gamma^{i-1})$. Now calculate A^{-1} and find the minimal polynomial for γ in $\mathbb{Q}[z]$.

(b) We have R is isomorphic to the quotient ring $S = \mathbb{Q}[z]/m(z)$ and let $B' = [1, z, z^2, z^3]$ be a basis for S and $C_{B'}: S \to \mathbb{Q}^4$ be the co-ordinate vector operation. Let $\phi: R \to S$ be the isomorphism and ϕ^{-1} it's inverse. We have $\phi(a) = C_{B'}^{-1}(A^{-1}C_B(a))$. Code ϕ and ϕ^{-1} in Maple as procedures **phi** and **phiinv**. Compute $\phi(z_1)$ and $\phi(z_2)$. Verify your code by checking that $\phi^{-1}(\phi(z_1)) = z_1$ and $\phi^{-1}(\phi(z_2)) = z_2$. Now use the isomorphism between R and S to compute $g = \gcd(a, b)$ in R[x] for

$$a = x^{4} + 2x^{3}z_{1} + (-z_{1}z_{2} + 3z_{2} + 1)x^{2} + (2z_{1} - 6z_{2})x + 3z_{1}z_{2} + 3z_{1} + 3z_{2}$$

$$b = x^{4}z_{1} - 2x^{3}z_{2} + (z_{1} - 3z_{2} - 3)x^{2} + (-2z_{1}z_{2} - 2z_{1} - 2z_{2})x + 3z_{1}z_{2} - 3$$

You should get $g = x^2 - z_1 z_2 + 1$. Do this two ways. First do the gcd comptuation in R[x]. Use Maple to do this by using RootOfs for α_1 and α_2 . For the second way apply the isomorphism to do the gcd computation in S[x]. then invert the isomorphism to recover the gcd in R[x]. Use Maple for the gcd computation in S[x] using a RootOf for γ . To apply ϕ to the coefficients of a in R[x] use

> collect(a,x,phi); # maps a in R[x] to a in S[x]

Question 5: Trager's factorization algorithm. [10 marks]

- (a) Let ω be a primitive 4'th root of unity. Using Trager's algorithm, factor f(x) = x⁴+x²+2x+1 and f(x) = x⁴+2ωx³-x²+1 over Q(ω). Use Maple's RootOf notation for representing elements of Q(ω) and Maple's gcd(...) command to compute gcds in Q(ω)[x].
- (b) To factor f(x) over $\mathbb{Q}(\alpha)$, Trager's algorithm chooses $s \in \mathbb{Q}$ such that the norm $N(f(x s\alpha))$ is square-free. Theorem 8.18 states that only finitely many s do not satisfy this requirement. You are given that a polynomial $n(x) \in k[x]$ for any field k is square-free iff gcd(f(x), f'(x)) = 1 iff res(f(x), f'(x), x) = 0. Using this, find all $s \in \mathbb{Q}$ such that if $N(f(x s\alpha))$ is NOT square-free for the two polynomials f(x) in part (a).