MATH 895, Assignment 7, Fall 2023

Instructor: Michael Monagan

Please hand in the assignment by 11:00pm Monday December 4th.
Late Penalty -20% off for up to 24 hours late, zero after than.
For Maple problems, please submit a printout of a Maple worksheet containing your Maple code and Maple output.

Question 1: The Schwartz-Zippel Lemma [6 marks]

Let D be an integral domain and S be a finite subset of D. Let $f \in D\left[x_{1}, \ldots, x_{n}\right]$ be non-zero. The Schwartz-Zippel Lemma says if α is chosen at random from S^{n} then

$$
\operatorname{Pr}[f(\alpha)=0] \leq \frac{\operatorname{deg} f}{|S|}
$$

Let p be a large prime. Let $f \in \mathbb{Z}_{p}[x, y]$ be non-zero of total degree d. If we pick $\alpha \in \mathbb{Z}_{p}^{2}$ at random, the Schwartz-Zippel Lemma says the probability $f(\alpha)=0 \leq d / p$. Equivalently, f can have at most $d p$ roots. Find a polynomial $f \in \mathbb{Z}_{p}[x, y]$ of total degree d that has $d p$ roots. Conclude that the Schwartz-Zippel Lemma is tight.

Question 2: Black Boxes [12 marks]

Construct a modular black box $B:\left(\mathbb{Z}_{p}^{n}, p\right) \rightarrow \mathbb{Z}_{p}$ as a Maple procedure for evaluating the polynomial $f=\operatorname{det}\left(V_{4}\right) \in \mathbb{Z}\left[x_{1}, x_{2}, x_{3}, x_{4}\right]$ where where V_{4} is the 4 by 4 Vandermonde matrix

$$
V_{4}=\left[\begin{array}{cccc}
1 & x_{1} & x_{1}^{2} & x_{1}^{3} \\
1 & x_{2} & x_{2}^{2} & x_{2}^{3} \\
1 & x_{3} & x_{3}^{2} & x_{3}^{3} \\
1 & x_{4} & x_{4}^{2} & x_{4}^{3}
\end{array}\right]
$$

So for $\alpha \in \mathbb{Z}^{4}, B(\alpha, p)$ should output $f(\alpha) \bmod p$. Now implement Algorithm GetDegree and the algorithm for computing $\operatorname{deg}(f)$, the total degree of f for $p=2^{62}+135$. To get random values from $[0, p)$ you can use

```
> p := 2^62+135;
> R := rand(0..p-1):
> R(), R(); # two random values
```

$$
2342493223442167775,2441597211547797803
$$

Test your algorithm on the black-box for $f=\operatorname{det}\left(V_{4}\right)$.
Repeat this experiment for T_{4} the symmetric 4 by 4 Toeplitz matrix.

Question 3: Sparse Interpolation Algorithms [12 marks]

(a) Apply Ben-Or/Tiwari sparse interpolation to interpolate

$$
f(w, x, y, u)=101 w^{5} x^{3} y^{2} u+103 w^{3} x y^{3} u^{2}+107 w^{2} x^{5} y^{2}+109 x^{2} y^{3} u^{5}
$$

over \mathbb{Q} using Maple. You will need to compute the integer roots of the $\lambda(z)$ polynomial and solve a linear system over \mathbb{Q}.
Now it is very inefficient to run the algorithm over \mathbb{Q}. Repeat the method modulo a prime p, i.e., interpolate f modulo p. Assume you know that $\operatorname{deg} f<16$. Pick p suitably large so that you can recover all monomials of total degree $d \leq 15$. See the Roots(...) mod p and Linsolve(...) mod p commands.
(b) The Ben-Or/Tiwari sparse interpolation algorithm interpolates a polynomial $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ in two main steps. First it determines the monomials then it solves a linear system for the unknown coefficients of the polynomial. Let

$$
f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\sum_{i=1}^{t} a_{i} M_{i}
$$

where a_{i} are the coefficients and M_{i} are the monomials. Let $a=\left[a_{1}, a_{2}, \ldots, a_{t}\right]$ be the vector of unknown coefficients. Let $v=\left[v_{0}, v_{1}, \ldots, v_{t-1}\right]$ be the vector of values where $v_{j}=f\left(2^{j}, 3^{j}, 5^{j}, \ldots, p_{n}^{j}\right)$. Let $m_{i}=M_{i}\left(2,3,5, \ldots, p_{n}\right)$ be the value of the monomial M_{i}. The linear system to be solved is $V^{T} a=v$ where

$$
V^{T}=\left[\begin{array}{rrrlr}
1 & 1 & 1 & \ldots & 1 \\
m_{1} & m_{2} & m_{3} & \ldots & m_{t} \\
m_{1}^{2} & m_{2}^{2} & m_{3}^{2} & \ldots & m_{t}^{2} \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
m_{1}^{t-1} & m_{2}^{t-1} & m_{3}^{t-1} & \ldots & m_{t}^{t-1}
\end{array}\right]
$$

is a transposed Vandermonde matrix. Use Maple to solve this linear system for the problem in part (a) using Zippel's the $O\left(t^{2}\right)$ method.

