MATH 895, Assignment 7, Fall 2023

Instructor: Michael Monagan

Please hand in the assignment by 11:00pm Monday December 4th.

Late Penalty -20% off for up to 24 hours late, zero after than.

For Maple problems, please submit a printout of a Maple worksheet containing your Maple code and Maple output.

Question 1: The Schwartz-Zippel Lemma [6 marks]

Let D be an integral domain and S be a finite subset of D. Let $f \in D[x_1, \ldots, x_n]$ be non-zero. The Schwartz-Zippel Lemma says if α is chosen at random from S^n then

$$\Pr[f(\alpha) = 0] \le \frac{\deg f}{|S|}.$$

Let p be a large prime. Let $f \in \mathbb{Z}_p[x, y]$ be non-zero of total degree d. If we pick $\alpha \in \mathbb{Z}_p^2$ at random, the Schwartz-Zippel Lemma says the probability $f(\alpha) = 0 \leq d/p$. Equivalently, f can have at most dp roots. Find a polynomial $f \in \mathbb{Z}_p[x, y]$ of total degree d that has dp roots. Conclude that the Schwartz-Zippel Lemma is tight.

Question 2: Black Boxes [12 marks]

Construct a modular black box $B : (\mathbb{Z}_p^n, p) \to \mathbb{Z}_p$ as a Maple procedure for evaluating the polynomial $f = \det(V_4) \in \mathbb{Z}[x_1, x_2, x_3, x_4]$ where where V_4 is the 4 by 4 Vandermonde matrix

	[1]	x_1	x_{1}^{2}	x_1^3
$V_4 =$	1	x_2	x_{2}^{2}	x_{2}^{3}
	1	x_3	x_{3}^{2}	x_{3}^{3}
	1	x_4	x_{4}^{2}	x_{4}^{3}

So for $\alpha \in \mathbb{Z}^4$, $B(\alpha, p)$ should output $f(\alpha) \mod p$. Now implement Algorithm GetDegree and the algorithm for computing deg(f), the total degree of f for $p = 2^{62} + 135$. To get random values from [0, p) you can use

```
> p := 2^62+135;
> R := rand(0..p-1):
> R(), R(); # two random values
```

2342493223442167775, 2441597211547797803

Test your algorithm on the black-box for $f = \det(V_4)$. Repeat this experiment for T_4 the symmetric 4 by 4 Toeplitz matrix.

Question 3: Sparse Interpolation Algorithms [12 marks]

(a) Apply Ben-Or/Tiwari sparse interpolation to interpolate

$$f(w, x, y, u) = 101w^5x^3y^2u + 103w^3xy^3u^2 + 107w^2x^5y^2 + 109x^2y^3u^5$$

over \mathbb{Q} using Maple. You will need to compute the integer roots of the $\lambda(z)$ polynomial and solve a linear system over \mathbb{Q} .

Now it is very inefficient to run the algorithm over \mathbb{Q} . Repeat the method modulo a prime p, i.e., interpolate f modulo p. Assume you know that deg f < 16. Pick psuitably large so that you can recover all monomials of total degree $d \leq 15$. See the Roots(...) mod p and Linsolve(...) mod p commands.

(b) The Ben-Or/Tiwari sparse interpolation algorithm interpolates a polynomial $f(x_1, x_2, \ldots, x_n)$ in two main steps. First it determines the monomials then it solves a linear system for the unknown coefficients of the polynomial. Let

$$f(x_1, x_2, \dots, x_n) = \sum_{i=1}^t a_i M_i$$

where a_i are the coefficients and M_i are the monomials. Let $a = [a_1, a_2, \ldots, a_t]$ be the vector of unknown coefficients. Let $v = [v_0, v_1, \ldots, v_{t-1}]$ be the vector of values where $v_j = f(2^j, 3^j, 5^j, \ldots, p_n^j)$. Let $m_i = M_i(2, 3, 5, \ldots, p_n)$ be the value of the monomial M_i . The linear system to be solved is $V^T a = v$ where

	1	1	1		1
<i>m</i>	m_1	m_2	m_3		m_t
$V^{T} =$	m_{1}^{2}	m_{2}^{2}	m_{3}^{2}	• • •	m_t^2
	m_1^{t-1}	m_2^{t-1}	m_3^{t-1}		m_t^{t-1}

is a transposed Vandermonde matrix. Use Maple to solve this linear system for the problem in part (a) using Zippel's the $O(t^2)$ method.