
MATH 800 Course Project, Fall 2023

Computing Inverses of Power Series

Michael Monagan

The project is worth 20% of your final grade. Hand in by 11pm Friday December 15th, 2023.

Part A: Classical Methods

To divide a by b using the fast division algorithm we need to compute 1/br mod x1+m where m
is the degree of the quotient. This is equivalent to computing the power series for 1/br to order
O(x1+m). For example, if b = 1− x and m = 3 then

1

1− x
mod x4 = 1 + x + x2 + x3.

Suppose we have a power series b(x) =
∑∞

k=0 bkx
k over a commutative ring R. If a0 is invertible

then the inverse of b(x) exists. To compute b−1 mod xn (up to the term of degree n − 1) we can
use series long division; we divide

b0 + b1x + · · ·+ bn−1x
n−1

)
1 + 0x + · · ·+ 0xn−1

just like with the normal division algorithm but in reverse; we divide the term of lowest degree in
the dividend by b0 at each step. Do this for b(x) = 1− x− x2 for n = 6 by hand.

Series long division is equivalent to the following. Let b−1 mod xn = a(x) = a0+a1x+· · ·+an−1x
n−1.

We require a(x)b(x) mod xn = 1, that is

(a0 + a1x + a2x
2 + · · ·+ an−1x

n−1)(b0 + b1x + b2x
2 + · · ·+ bn−1x

n−1) mod xn = 1.

Equating the coefficient of xk on both sides we obtain the following equations for a0, a1, . . . , an−1

a0b0 = 1

a0b1 + a1b0 = 0

a0b2 + a1b1 + a2b0 = 0
...

a0bn−1a1bn−2 + · · ·+ an−1b0 = 0.

Solving these equations for a0 then a1 then a2 etc. leads to a simple algorithm for computing a(x)
which is easy to implement using arrays. Let B be the input array b0 b1 . . . bn−1 indexed

from 0 and let A be the array a0 a1 . . . an−1 , indexed from 0. Let p be a prime and R = Zp

be the coefficient ring. Write a Maple procedure that on input of (B,n, p) outputs the array A
containing b−1 mod xn. Test your algorithm on (i) b = 1 − x − x2 for n = 8 and p = 101 and (ii)
b = 92x7 + 44x6 + 95x5 + 5x4 + 97x3 + 58x2 + 43x + 99 for n = 8 and p = 101.

How many multiplications does this algorithm do? Give an exact count.
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Part B: The Middle Product

The Newton iteration formula for computing the inverse of b(x) mod xn is

yk = 2yk−1 − by2k−1 mod xn

where n = 2k and we have already computed yk−1 such that byk−1 = 1 mod xn/2. One way to do
this is in a simple loop

n = 1
y0 = 1/coeff(b, x, 0)
while n ≤ m do

n = 2n
yk = 2yk−1 − (b mod xn)y2k−1 mod xn

end while

Since deg(yk−1, x) < n/2 we can use an FFT of size n to compute y2k−1 but for the second multi-
plication of y2k−1 by b mod xn we need an FFT of size 2n. So one multiplication of degree n/2− 1
and one of degree n − 1, i.e. M(n/2) + M(n). This leads to the following recurrence for I(n) for
the cost of the inverse.

I(n) = I(n/2) + M(n/2) + M(n).

Using the assumption that 2M(n/2) < M(n), that is, one multiplication of degree n costs more
than two multiplications of degree n/2, we obtain I(n) < 3M(n).

Consider the following alternative formula for the Newton iteration.

yk = 2yk−1 − b y2k−1 = yk−1 + yk−1(1− b yk−1).

Since yk−1 satisfies b yk−1 = 1 mod xn/2, if we truncate b mod xn we have (b mod xn)yk−1 equals

1 + 0x + · · ·+ 0x
n
2
−1 + m0 x

n
2 + · · ·+ mn

2
−1x

n−1 + a0 x
n + a1 x

n+1 + · · ·+ an
2
−2x

3
2
n−2

for some coefficients mi and ai. Let m(x) =
∑n/2−1

i=0 mix
i and let a(x) =

∑n/2−2
i=0 aix

i. We have

(b mod xn)yk−1 = 1 + m(x)x
n
2 + a(x)xn.

What we want to compute is m(x) because mod xn the a(x) is not needed. m(x) is called the
middle product. The middle product optimization is to compute m(x) by multiplying b mod xn by
yk−1 using an FFT of size n. The idea is due to Hanrot, Quercia and Zimmermann [1].

Let ω be a primitive n’th root of unity. Let Fω : Fn → Fn denote the Fourier transform
Fω(a) = [a(ωi) : 0 ≤ i ≤ n− 1]. Since (ωi)

n
= (ωn)i = 1 we have

Fω(a(x)xn) = Fω(a(x)).

Thus if we use an FFT of size n to multiply b mod xn by yk−1 we will get

1 + a(x) + m(x)xn/2

and we can read off m(x) since deg a(x) < n/2. Note, after inverting the FFT we will have this
vector of n values
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1 + a0 a1 a2 . . . an
2
−2 0 m1 m2 . . . mn

2
−1

from which we can also read off m(x). Back to the main formula.

yk = yk−1 + yk−1(1− byk−1) mod xn

= yk−1 + yk−1m(x)xn/2 mod xn

Thus we have one more multiplication of yk−1 of degree < n/2 by m(x) of degree < n/2 for which
we can use an FFT of size n. Thus two multiplications of degree < n/2 in total, that is, 2M(n/2).
This leads to a new cost for computing 1/b mod xn of

I(n) = I(n/2) + 2M(n/2).

Assuming 2M(n/2) < M(n) show that I(n) < 2M(n). Using your FFT code and fast mul-
tiplication algorithm from Assignment 3, program the new Newton iteration in Maple to use the
middle product optimization and the FFT. Test your algorithm on (i) b = 1−x−x2 for n = 8 and
p = 97 and (ii)

> b := Randpoly(15,x) mod 97;

for n = 16 and p = 97. Check that your answer is correct.
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