J. Symboiic Compurtarion (1990) 9, 375-403

Interpolating Polynomials from their Values

RICHARD ZIPPEL
Depariment of Computer Science, Cornell University
Ithaca, New York 14853 U. 5. A.

(Received 4 September 1989)

A fundamental technique used by many algorithms in computer algebra
is interpolating polynomials from their values. This paper discusses two
algorithms for solving this problem for sparse multivariate polynomials,
an updated version of a probabilistic one and a new deterministic tech-
nique that uses some ideas due to Ben-Or and Tiwari (1988). In addition
algorithms are presented for quickly finding points that are not zeroes of
sparse multivariate polynomials—the zero avoidance problem.

1. Introduction

Mathematical calculations involving polynomials or other symbolic quantities
suffer from a problem not found in numerical calculations: intermediate expression
swell. That is, when performed in a straightforward fashion, the intermediate
expressions of a calculation are much larger than the final answer. Fundamentally,
this difference is due to the fact that the amount of space required to represent the -
product of two floating point numbers is about as much as for each of the original
raultiplicands. However, the space required for the product of two multivariate
polynomials can be much Jarger than that required for the multiphicands. In fact,
even the sum of two multivariate polynomials can be twice as large the summands.
This effect is more pronounced with polynomials with many variables.

Two fundamental approaches to this problem have been suggested. Each gen-
erates one or more simplified computations where some of the symbolic variables
are replaced by numerical values. These simplified problems do not suffer as much
from intermediate expression swell and may be solved more easily than the origi-
nal problem. The two techniques differ in how they determine the solution of the
original problem from the solutions of the simplified ones.

The first approach, which we call the modular technique, solves a large number
of simplified problems but uses carefully chosen values for the symbolic variables.
These solutions are then interpolated to recover the variables eliminated in the
simplified problems, producing the final answer. In many practical algorithms the

0747-7171/90/030375+29 $03.00/0 © 1990 Academic Press Limited

376 R. Zippel

resulting intermediate expressions do not involve any symbolic variables and there
is essentially no intermediate expression swell. This interpolation technique was
first introduced in the modular GCD algorithm of Brown (1971).

The second approach, which we call Newton’s technique, uses the solution to
a single simplified problem as a the initial value for a p-adic solution derived by
Newton'’s iteration. (Conversion of a p-adic solution to a solution in the original
nng is rarely difficult.) This is the basic idea behind the polynomial factoring
algorithm of Wang and Rothschild (1975), the EZGCD algorithm of Moses and
Yun (1973) and its successors Wang (1978) and most of the polynomial factoring
algorithms now in use. Both the modular technique and Newton’s technique suffer
when the answer is sparse (has relatively few non-zero coeflicients). In this case a
great deal of effort 1s expended computing coeflicients that are zero.

Versions of bothk the modular technique and Newton’s technique whose time
complexity is random polynomial were first given in Zippel {1979, 1980). Applica-
tions of these techniques to polynomial factoring and their analysis and extension,
have been presented in a number of papers by von zur Gathen and Kaltofen: von
zur Gathen (1983, 1985), Kaltofen (1985a, 1985b, 1987) and von zur Gathen and
Kaltofen (1985). The probabilistic nature of these algorithms stems fromn an as-
sumption about certain polynomials that arise in the calculation. It is known that
the values of these polynomials at certain points are zero. This could happen
either if the polynomials were identically zero or if the points chosen happened to
be zeros of the polynomials. The key assumption of these algonithms is that the
polynomials are identically zero. These algorithms can be made deterministic by
choosing points that cannot all be zeroes of these polynomials. We call this the
zero avoidance problem.

Problem. (Zero Avoidance Problem) Given some set of parameters for a polyno-
mial (number of variables, degree, number of non-zero terms, size of coefficients,
etc.) choose a set of points & such that no polynomial with those parameters
vanishes at all of the points of S.

The original sparse polynomial algorithms used only the number of variables (n)
and degree (d) parameters in choosing the set S. It is easy to show that S must
contain at least (d 4+ 1)™ points (see proposition 1 im section 2). To prove that
a polynomial is zero using this set of points would require time exponeniial in
the number of variables. Thus fast algorithms that use only these parameters are
probabilistic. The deterministic algorithms given here also make use of the nuinber
of non-zero terms (T) in choosing S. It is this additional bit of information about
the polynomial that keeps the size of S small.

Many of the ideas used to solve the zero avoidance problem can be used to
clanify and simplify certain steps in the modular technique. The pariicular piece
that we discuss in this paper we call the interpolation problem. Rather than

Interpolating Polynomials from Their Vajues 3717

choosing points to prove that a polynomial is not identically zero, we go further
and actually determine the polynomial itself.

Problem. (Interpolation Problem) Given a set of parameters for a polynomial
(number of variables, degree, number of non-zero terms, size of coefficients, eic.)
choose a set of points S with the following property. For any polynomial P with
those parameters, P can be determined from & and P(S) quickly, i.e. either
polynomial time or probabilistic polynomial time.

In this paper we present three solutions to the zero avoidance problem, and
two solutions to the interpolation problem. Each is summarized in the following

two tables.
Zero Avoidance Problem
Schwartz Zippel Ben-Or Tiwan
Algorithm type Probabilistic | Deterministic | Deterministic
Number of evaluations 1 nT? T+41
Chance of error € 0 0
Size of evaluations in bits log —’fg nTlog T Tlogn

The column labeled “Schwartz” corresponds to the probabilistic algorithm
presented by J. Schwartz (1980) and which is intrinsic to Zippel (1979). Since
it does not take into consideration the number of non-zero terms in the P, the
parameter 7' does not appear. In the third column, labeled “Ben-Or Tiwari,” we
give the recent results of Ben-Or and Tiwari (1988). The second column, labeled
“Zippel,” is a new algorithm presented here in section 5. Though its performance
is wnferior to that of Ben-Or and Tiwari it makes use of some new techniques that
may be of use in other problems. In particular, it yields a deterministic solution
of a variant of the zero avoidance problem for polynomials over finite fields.

For the interpolation problem a new parameter arises, t the irue number of
non-zeroes terms in P. This can be much smaller than the a priori bound on the
number of non-zero terms 7.

The first column of this table characterizes the author’s original probabilistic
algorithm updated to include an idea of Ben-Or and Tiwar. The third column
corresponds to the deterministic algorithm due to Ben-Or and Tiwari (1988). It is
unique in that it does not require a priori bounds on the degrees of the variables
that appear in the result. Notice that the probabilisiic algorithm is significantly
better than the deterministic one when the bound on the number of terms is not
sharp (T' > t). The second “Zippel” algorithm is a new deterministic variant

378

R. Zippel

Interpolation Problem

T

Zippel Zippel Ben-Or Tiwan
Algorithm type Probabilistic | Deterministic | Deterministic
Degree bounds Yes Yes No
Number of operations ndt? ndt*T T? (log® T + log nd)
Number of evaluations ndi ndtT 2T
Size of evaluations in bits log "—dZ—T—? Tlogn Tlogn

of the probabilistic algorithm whose dependence on T is not quite so strong as

Ben-Or and Tiwari’s algorithm. Thus it also performs especially well when 7 is

not a sharp bound. This algorithm is presented in section 6.

Kaltofen and Yagati (1988) have suggested an improved technique for solving
the systems of linear equations that arise in the two interpolation algorithrns dis-
cussed in this paper. Their ideas improve the algorithms discussed in the paper
to give the performance figures given above. In this table M(t) denotes the com-
plexity of multiplying two univariate polynomials of degree t. This variant of the

deterministic algorithm is competitive with Ben-Or and Tiwari’s algorithm.

Interpolation Problem
Kaltofen-Yagati | Kaltofen-Yagati
Algorithm type Probabilistic Deterministic
Degree bounds Yes Yes
Number of operations ndM(t)log ¢ ndTM(1)logt
Number of evaluations ndt ndtT
Size of evaluations in bits log ﬂ?ﬁ Tloglogn

In the conclusions we give some comments on how these algorithm impact
some of the original calculations, such as greatest common divisor and factorization

problems.

We let Z denote the rational integers and Z/(m) the integers modulo m. F,

2. Generalities

denotes the finite field with g elements and F7 its multiplicative subgroup.

Ioterpolating Polviiomials from Their Values 379

Throughout this paper we assume polynomials are represented as a list of
monomials (pairs of exponent vectors and coefficients) and that monomials with
zero coeflicients are omitted. The number of variables in a polynomial is denoted
by n. Thus the exponent vectors are n-tuples. The maximum degrec of any
variable in the polynomial 1s denoted by d. The number of non-zero monomials of
the polynomial P is usually denoted by ¢ or terms(P), for additional preciseness.
For a dense polynomial, one where each monomial has a non-zero coefficient,
terms(P) = (d + 1)". We generally use capital letters to denote a priori bounds,
and lower case letters for the actual value. Thus T is used to designate a bound
on the number of terms in P, while ¢ denotes the actual number of non-zero terms
present mm P.

To minimize the number of subscripts in formulaec we use a variant of the
notation introduced by Laurent Schwartz. Let X = (X;,X,...,X,) and € =
(e1,€3,-..,en) be two vectors. Then we write the usunal (inner) dot product as

X =e1 Xy +e3Xo+ - +enXn.
We also extend this notation to exponentiation as follows
Xf= (X% X*,,..,X*) and X¥=XpXp2... X!
Thus the multivariate polynomial
aXsuXPr X X X5 X e XX X

would be written
O X F X8 o f e X,

We always use the vector accent when using this notation.

When evaluating algorithms involving polynomials, we need to measure the
size of a polynomial. In this paper we have chosen to use the number of non-
zero terms. Thus an upper bound on the size of a polynomual of n variables,
each of degree d, is (d + 1)". The number of non-zero terms, however, is often
much smaller. Notice that when establishing that a polynomial P of size O(T) is
identically zero, we already know that P cannot have more than O(T) non-zero
coefficients, though we know little about the exponents.

An alternative measure of the size of a polynomial P is the size of a straight
line program to compute P. This measure was advanced by Kaltofen (1987). The
class of straight line programs of size O(T) contains almost all polynomials with
O(T) non-zero terms and many more. It would be interesting to know if it is
possible to extend the results presented here to this wider class of polynomials.

To prove that a polynomial is zero by considering its value at a number of
points requires some bound on the information content of the polynomial. We
begin with a proposition that establishes a lower bound for our results.

380 R. Zippel

Proposition 1. Let S = {d;} be a set of T—1 n-tuples. There exists a polynomial
with rational integer coefficients, not identically zero, that contains no more than
T non-zero monomuals and that vanishes at every point in S.

Proof: Choose a polyncmial with 7' monomials:
P(X) = X% 4 g X% b 4 op 0T,

whose coefficients (¢;) will be determined later from &, & # €; and chosen arbi-
trarily. For P to vanish at @;, an eclement of S, the ¢; must satisfy the following
linear equation:

et + cﬁfz + cT&'fi-T =0.

Since these equations are homogeneous and there are more undetermined variables
than inear constraints, there 1s a non-trivial solution to this system of equations.
[l

Assume we wish to prove that a polynomial is zero using only its value at
points that we are free to specify. Proposition 1 demonstrates that showing the
polynomial is zero at T points only shows that that the polynomial is either iden-
tically zero or has more than T non-zero terms. Thus if all that is known about a
polynomial is the number of variables, n and degree bounds on those variables, d,
we will need (d + 1)" evaluations to prove that the polynomial is non-zero. This
means that there is no deterministic algorithm that proves a polynomial is zero
from its values, and degree bounds. Additional information is also needed.

For univariate polynomials over the reals, we can show that by choosing the
points carefully, any polynomial with no more than T terms that vanishes at T
points is identically zero.

Proposition 2. Let P(z) be a univariate polynomial with coefficients in Z. The
number of positive real zeroes of P(z) is less than or equal to terms(P) — 1.

Proposition 2 follows immediately from Descartes’ rule of signs since the max-
imum number of sign changes in the coefficients of P(z) is terms(P) ~ 1. (For
instance, Pélya and Szegd (1976) Part V, Chapter 1, problem 36.) The following
corollary is merely a restatement of the proposition.

Corollary. A univanate polynomial that vanishes at the integers 1,2,...,T 1is
erther identically zero or has more than T non-zero coefficients.

Using some new techniques we show in section 5 that O(n7T?) points suffice,
where n is the number of variables in P. This is accomplished by finding a special-
wation of P to one variable that does not increase the number of non-zero terms
and then applying Proposition 2. The previous best results were that (d+1)"+1
sufficed, which is optimal for dense polynomials, but can be exponentially bad

Inierpolating Polynomials from Their Values 3381

for sparse polynormials. In section 6 we give Ben Or and Tiwar's result that 7
sufices. In light of proposition 1 this is the best possible.

We occasionally use the notation p; to indicate the ith prime. It is is also
used to represent the ith element of the vector p. Our intent should be clear from
the context. Later, we will need a crude estimate for the size of the product of the
first N primes. For our work we can use the crude estimate of

py < (N + 1),
for some small constant e. This is much weaker than the best known results, for
instance Rosser and Schoenfeld (1962),

By applying Sterling’s formula to the product of the first N primes we have
log (p1p2 - pn) = log(N + 1)IT+e

=(1+¢) (N + -2—) log(N + 2) + O(N)
This proves the following proposition:
Proposition 3. There exasts a constant ¢y such that
log (p1p2 - pn) S c1Vlog N.
Many of the algorithms developed in this paper depend upon the special

properties of Vandermonde matrices, which we summanze here. A Vandermonde
matrix 1s a matrix of the form

1k k2 oo kP
o | DR H o ET
1k k2 oo kel

where the k; are chosen from some field. Similarly, a system of linear equations of
the form .
Xy +k1X2+kfX3+”-+k?_ Xp = w

X, +k2X2+k‘§X3 +'-«+k;_an = W9

X+ kpXo+E2 X 4+ -+ kX, = w,
will be called a2 Vandermonde system of equations.
A matrix where the degrees of each row rise monotonically, but not necessarily
Iinearly, is called a generalized Vandermonde matrix, viz,

SR SO SO T
(3 [} es e
kz‘ kz kz e kzn
e [[€ . €y
kﬂl an kns kn

The following well known theorem gives the determinant of a Vandermonde
matrix.

382 R. Zippel

Proposition 4. The determinant of the Vandermonde matrix is

detVo=] (% -k

1<i<i<n

-

As an immediate consequence the determinant of a Vandermonde matrix is non-
zero if and only if the k; are distinct.

A similar result is true for generalized Vandermonde matrices over the re-
als, but the proof is a little trickier. Notice that while proposition 4 applied to
Vandermonde matrices over any field, the following proposition is only valid over
the reals, which has characteristic zero. We know of no similar result for fields of
positive characteristic.

Proposition 5. The determinant of a generalized Vandermonde matrix is non-
gero if the k; are distinct positive real numbers.

A proof of this result can be found in Gantmacher (1959), volume II, page 99.

The inverse of a Vandermonde matrix can be computed by the following well
knoown technique. (See Press (1986), for example.) Multiply a Vandermonde
matrix by a general n by n matrix:

: 2 n—1
1k kl T k'l @y @12 @1g - Qin
. 2 n—1
1k kg o Ry Gz1 Q22 Q23 - G2n
1 kn kﬁ s k;:_l any An2 Q4ng “*r Gpn

The jth element of the top row of the product of these two matrices is
ay; + agjkl -+ asjk]? + -+ anjk?‘} = P)(Ic])

In fact the product above is

Py(ky) Py(ky) - Pa(k)
Pi(ka) Pp(ks) -+ Pal(ka)
Py <.k-n) PZ(‘kn) Tt Pﬂ(kn)

Choosing the P;(Z) to be

Z —k;
kj~lcg’

i)
1€i<n

we see that the product matrix is the identity, and thus the coefficients of the P,
are the columns of the inverse of the Vandermonde matrix. Each of the P;(Z) can

Interpolating Polynomijals from Their Values 383

be computed in O(n) operations from a master polynomial, which itself can be

computed in O(n?) operations. Thus the Vandermonde matrix can be inverted in
O(n?) time.

Assume we wish to solve a Vandermonde system of equations like the follow-
mng:
X] +’C1X2 + k%)(g +—}—}C?—1Xn = W)
Xy + ko Xo + k;‘:X:; + - k;_an = Wy
(1)

X1+ ko X0+ ki){g + - k:—].Xn = W,

If recognized as a Vandermonde system, these equations need only consume O(n)
space. They can be solved using O(n) space by the following device.
Define
P(2)=][(2-Hh).
1<i<n

This polynomial contains n + 1 terms. The coefficient of Z™ is always 1. The
polynomials P(Z)}/(Z — k;) can be computed by synthetic division. It is the
numerator of Pj(Z). The value of P(Z)/(Z ~ k;) at k; is the denominator of
P;(Z). Thus each of the P;(Z) can be computed using O(n) space and time. The
computation of the X; is arranged as follows.

wy - coef(Py, Z%) wh - coef(Py, 29)
: T

Xy
Xn) wy - coef(P, Z"1) wy, - coef(Pp, 2" 1)

After each column vector on the right hand side is computed, it is added to the
accumulating X; and its storage may be reused by the following column vector.
This approach can also be applied to transposed Vandermonde systems like

following
X+ X, F+Xs 4o+ X =wy

By Xy + ko Xo + ks Xs -+ kn Xy = wy
(2)

k;x—lle + k;—lXQ + kgx—l.x.a + o k’:thn = W»

since the inverse of the transpose of a matrix is the transpose of the mverse, we
have the following formula for each of the X;

Xi =w - coef(Py, Z°) + wy - coef (P, Z') + -+ - + wy, - coef (P, Z™71).

These results are summarized in the following proposition.

384 R. Zippel

Proposition 6. The Vandermonde system (1) and the transposed Vandermonde
system (2) over the field F' can be solved in O(n?) operations over F. Furthermore,
the space required is that of O(n) elementsof F. If F = Q and K = max | num k;|+
max | den k;| then the largest number used will require O(nlog K) bits and in total
O(n’log K) bits of storage will be required.

3. Dense Interpolation

The general problem we consider in this paper is computing a polynomial
from its values at certain points, whose choice may be part of some higher level
algorithm. These polynomials may be muliivariate and their coefficients generally
lie in the rational integers, though occasionally they lie in a finite field. Many of
these results can be exiended to more complex fields, but we do not do this here.
In this section we assnme the number of variables in the polynomial is given, as
well as degree bounds, but no additional assumptions are made. In particular,
nothing is known about the number of non-zero terms in the polyncinial.

3.1 UNIVARIATE DENSE INTERPOLATION

The simplest form of this problem consists of determining a univariate poly-
nomial from its values at selected points. The straight forward approach works
surprisingly well. Let

P(Z) = Po +plZ+"'+pn—IZn—l +anu

be the polynomial to be determined. Assume the coefficients are over a field F|
and let zp,...,z, be the set of distinct evaluation points. From: the values of
P(z;) = wo we get the following system of linear equations in the unknown p;.

Po + P10 +p223+"'+pnl§=wo

2
Po+pray +p2zf o Fpezl =Wy

Po + P1Zn + P22i F o+ Przp = Wy

This is a Vandermonde system and can solved quickly using the algorithm of
Proposition 6.

3.2 MULTIVARIATE DENSE INTERPOLATION

As pointed out in the previous section, a polynomial in one variable of degree d
can be determined from its values at d+1 points using O(d?) arithmetic operations.
This result can be extended to muliivariate problems.

Interpolating Polynomials {rom Their Values 385

Let P(X) be the polvnomial to be determined. It is a polynomial in n var-
ables, X1,..., Xn, whose coeflicients lie in an integral domain R. Each X; appears
to degree no more than d; in P. Let ¢ = (dl + 1)(d2 + 1) -+ +, the maximura number
of terms in P. Writing P as a sum of monomials using the vector notation we
have

.p(.)?')=c)..)—gé'1 +62X€2 +---+CgX‘€‘.',

where the €; run through each possible exponent combination. Choosing £ random
n-tuples 7; and computing the values of P(Z;) gives a system of ¢ linear equations.
In general, this requires O(¢%) operations to solve, and perhaps more important
O(£?) space.

There remains the question of solvability of the system of equations. Let M
be an n X n matnx over a field . M will be singular if and only if det M = 0.
Thus the singular matrices form an algebraic set of codimension 1 in the space of
all n x n matrices. Thus the probability that the system of equations is singular
is about 1/#(F'). For probabilistic algorithms this suffices. For deterministic
algorithms more analysis is required. This is done in later sections by choosing
the evaluation points carefully.

A recursive technique was used by Brown (1971) in the modular GCD al-
gorithm was first used to bring the time requirements for interpolation down to
O(£?). In this paper we use another approach that leads more naturally to the
techniques for dealing with sparse polynomials.

Choose a random n-tuple p. This 1s the initial evaluation point. Denote the
values of the monomials % by m;. Additional evaluation points are obtained by
raising p' to successive powers (starting with 0). Notice that (ﬁj)g’ = m!. Thus
we have the following system of equations to solve.

c1+ca+ -+ ¢ = P()
C]m1+C27n2+"'+C[m[:P(f)‘)

ami + coml 4 - 4 cpm? = P(p%)

- -1 - 1
c;mf 1+62m§ +-~+Cgm§ L= P(FY

This is the transpose of a Vandermonde system. As discussed in section 2, this
system can be solved in O(£%) time and O(£) space.

The key issue in this approach is guaranteeing the m; are distinct so that
the Vandermoande system will be non-singular. If the coefficient domain, K, is
a unique factorization domain we can do this easily. For instance, assume R is
the rational integers. We choose the components of p to be distinct primes, viz.,
p=(2,8,53,...). By unique facforization each of the m; will be distinct.

386 R, Zippet

If the coefficient domain is a finite field F,, then the problem can be more
difficult. The finite field must contain at least £ elements for the Vandermonde
system to be non-singular. For the dense interpolation technique being discussed,
the maximum value of £is (d+1)". When ¢ < (d+ 1)™ the modular interpolation
technique can still be used but elements should be chosen from an algebraic ex-
tension of F, that has more than (d + 1)" elements. In general, we can solve the
system of equations using conventional (O(¢%)) techniques.

If the charactenistic of Fy is sufficiently large, we can do better. Choose the
compomnents of § to be the rational primes, (2,3,5,...). If each of the m;, when
computed in Z, is less than the characteristic of F, then they will be distinct as
elements of F;. For this to be the case the characteristic must be greater than

(2-3---pp)? a1t

by proposition 3.

This idea of substituting primes for each of the variables was first suggested
by Grigoriev and Karpinks: (1987), who were studying a problem involving poly-
nomials with 0/1 coefficients. These ideas were first applied to interpolation by
Tiwari (1987).

In the following paragraphs we analyze the hard case: We assume that ¢ is
greater than (d + 1)™, but that the characteristic of F, is less than n'"¢. The
actual analysis is staightforward but somewhat lengthy. We consider the following
somewhat more general question since its solution will be of use in analyzing
the sparse algorithms. Let {&;} be a set of T n-tuples where each component is
bounded by d. (In the current case T' = (d + 1)".) What is the probability that
for a randomly chosen ¥ € F7 there is an ¢, and €; such that F% = 4 ?

We begin with an elementary enumeration proposition. The one dimensional
version can be found in almost any book on elementary number theory.

Proposition 7. Let @ # 0 be a fixed n-tuple where each component is an element
of Z/(m) and ¢ be the common GCD of the a; and m. Let £ be an n-tuple whose
components range over Z/(m). Then @ Z takes on m/c distinct values. These

values divide the different T into m/c classes each containing ¢em™~1 different .

Proof: First we reduce to the case where ¢ = 1. Since @ £ is a muitiple of ¢ for

every Z, @ Z can take on no more than m/c values, 1.e. 0,¢,2¢,.... Let ac be one
of these values. Each solution of
iz
=a (modm/c) (3)
¢

gives nise to ¢” solutions of @7 = ca {mmod m). Thus if we can show that (3) has
(m/c)™~1 solutions, we are finished. The rest of the proof proceeds via a slightly
complicated induction.

Interpolating Polynomials from Their Values 387

Consider the one dimensional case, az = b (mod m). Since a and m are
relatively prime, there is exactly one value of = that satisfies the relation for every
value of b, as required by the proposition.

Now assume the proposition is true for all vectors @ of dimension less than
n. Let o be an arbitrary element of Z/(m). We want to show that @3- 7 = «
(mod m) has m™~! zeroes. Without loss of generality we can assume that a; is
not zero. If a; and m are relatively prime then for every choice of as, ..., a, there
1s a unique a; that satisfies the relation. Thus there are m™~? zeroes of the relation
as desired.

Assume that a; and m have a GCD of g. The relation has no zeroes if g does
not divide azzy + -+ - anz, — . Thus we consider the number of zeroes of

a2z22 + - anzp = @ (mod g).

Notice that as,...,a, cannot have a GCD dividing ¢g. Thus this equation has
g™~ ? zeroes modulo g. Each is the image of (m/g)"~! elements modulo m. Thus
there are m”~1/g choices of a3,...,a,. Each one will give rise to g choices for z;
giving the desired result. []

Corollary. Let @, m and ¢ be as in the previous proposition. Then there are
em™ 1 distinct solutions to @-% =0 (mod m).

Proof: 0 1s always one of the values of @ - £ since Z’s components could be all

zeroes. []
This result can now be used to answer the question raised above.

Proposition 8. Let &;,...,&r be n-tuples where each component is less than d.
There exists no more than

T (T-1) (g1
2

4

n-tuples X with components in F, such that for some ¢ and) X& and X% have
the same values. Equivalently, for at least

RESSYRE 2.8\

n-tuples X, X% takes on distinct values.

Proof: Let g be a generator of the multiplicative group F}. Then for each n-tuple
X we can assign another n-tuple @ such that X; = g%, assuming no X; is zero.
The a; are elements of Z/(q — 1). Two monomials X& and X% have the same
value when

& a-&; a-¢; &
T =97 = g% = vecz®.

388 R. Zippel

That is, when @- (& — €;) =0 (mod ¢ —1). By the previous corollary there are
¢(g—1)""" such zeroes, where ¢ is the GCD of the elements of & — &; and ¢ — 1.
Since ¢ < d there are at most d(g — 1)~ tuples £ that cause these two terms to
take on the same value.

There are T(T — 1)/2 distinct pairs of ¢, so the maximum number of 7 that
cause a pair of % to take on the same value is

d-T(T—1) (g—1)"!
) .

O

Since there are only (¢ — 1)*~! possible # (ignoring those with a zero compo-
nent), we have the following corollary.

Corollary. The probability that a randomly chosen ¥ will cause two of the %

to have the same value 1s
d-T-(T'-1)

2(¢-1)

If we wish the probability of a collision to be less than ¢, then for dense

polynomials this means that

(d+ 1)2»H!
qg> ——--:
2¢

This 1s actually quite impractical for polynomials with large numbers of variables
and high degree. Fortunately, many problems are sparse; 1.e. T < (d+1)Y, which
gives much better results. This is the topic of the next section.

4. Sparse Interpolation

The purpose of this section is to develop Zippel’s sparse interpolation algo-
rithm, which gives a probabilistic resolution of the interpolation problem. What
is presented is an improvement of the author’s onginal results based on some of
the ideas first suggested by Ben-Or and Tiwan. This algonthm 1s given no infor-
mation about the number of non-zero terms in the polynomial being interpolated.
Instead it develops an estimate of the number of terms as each new vanable is
introduced. As a consequence its performance depends upon the actual number of
non-zero terms in the polynomial rather than an a prior1 bound. This probabilistic
algorithm tends to be more useful in practical situations than the deterministic
algorithms presenied in the following sections.

This section has been divided into three subsections. In the first we give a
demounstration of the algorithm and its benefits. In the subsequent subsections
we give a more formal presentation of its details, and analyze the algonthm’s
performance.

Inferpolating Polvnomials from Their Values 389

4.1 HEURISTIC PRESENTATION

-4

As before we wish to determine the polynomial P(X) € U[.X] from its val-
ues, where U is a field with sufficiently many distinct elements. We assume that
d; bounds the degree of X; in P. The sparse interpolation algorithm computes
P one variable at a time. That is, we initially compute P(aji,az,...,ay), then
P(Xy,as,...,a,), then P(X;,X>,as,...,a,) and so on, until we have determined
P(X). The introduction of each new variable is called a stage of the algorithm.
We use clues from the polynomial produced in the preceding stage to minimize
the effort required to produce the next polynomial in the sequence.

The description of the sparse interpolation algorithm becomes rather involved
and 1t is easy to get bogged down by all the subscripts and vanables involved, but
it is fundamentally quite simple. In this seclion we give an explicit example.

Assume we wish to interpolate a polynomial in three variables, P(X.Y, Z)
over a field, where the degree of each variable is not greater than 5. When the
polynomial is dense, there are 125 different coefficients that must be determined.
We assume that most of these coeflicients are zero and that P possesses only a few
non-zero monomials. By using one of the deunse interpolation schemes of section
3, we can compute P(X, o, 20) from P(z0,¥0,20), P(z1,%0,20),- .-, P(25,%0, 20).
Assume this yields

P(nyO;ZO) = C(].X5 + C]X 4," Co.

This is the end of the first stage.
Beginning stage two, we know that P(X,Y,Z) can be written as

P(X,Y,Z) = Ps(Y, 2)X° + Pi(Y, 2)X* + - + Bo(Y, Z).

From the first interpolation we know that Ps{yo,20) = co, Pi(yo,20) = ¢ and
Py(yo,z0) = c2. Since the other coefficients are zero

P4(.7J0,ZO) = Pﬁ(yOsz(J) = PZ(y();zO) = 0.

The key step iu the sparse interpolation algorithm is to assume that this is true
for all values of Y and Z. That is, that

P(Y,Zy=P(Y,Z) = P(Y,Z) = 0.

In typical calculations, where yo and zq are choser at random from a large set
of possibilities, this is a good assumption. Proposition 9 below gives a precise
measure of how good an assumption this 1s.

We now choose a new value for Y, y1, and compute P(X,y1, z0). Without the
assumption of the previous paragraph, this interpolation would require 6 additional

390 R. Zippel

values of P. Instead we assume that P(X,y1,z0) contains only 3 non-zero terms,
1e.,

P<Xsy1s20) = C.’SXS + C4X + Cs,

where the c3, ¢4 and ¢s are to be determined. Since there are only three unknowns
to be determined only three new values of P are required.
This process is repeated until we have six polynomials.

X'+ X +co = P(X, yo,70)
Cng +C4X + ¢5 = P(.X,yl,ZQ)

C15.X5 + ClsX i 7 = P(X yS’ZO)

By the dense interpolation algorithm of section 3, the coefficients of the X' terms
can be interpolated to produce a polynomial in Y, and similarly for the linear and
constant terms. Combining these results we have P(X, Y, z5). Notice that we have
only needed 6 + 3 + 3+ 3 4 3 + 3 values of P to compute this polynomial. The
dense 1nterpolation scheme would have required almost twice as many evaluation
points.

Beginning the third stage, let us assume this gives the polynomial

P(X,Y, %) = ki X5 4 (ks Y* 4 ksY)X + By Y
= leﬁ + ngY4 + ks XY + k4ys,

where the k; are elements of the ground field. We are now in a position to begin
thie process again, but this time introducing the variable Z. To do this we need
to calculate the polynomials P(X,Y, z), P(X,Y,71),..., P(X,Y,25). We assume
that those XY -monomials that did not arise in P(X,Y,2;) have coefficients of
zero in P(X,Y, Z).

Thus to compute

P(X,Y,21) = ks X° + ke XY + ks XY + kg VS

we only need interpolate four values of P. Thus the additional 5 polynomials only
required 5 X 4 = 20 evaluation points. Without the sparsity assumptions each of
the 5 polynomial would have required 36 evaluation points, and 180 in all.

4.2 FORMAL PRESENTATION
To fix our notation, assume we want to use the sparse mterpolation algorithm
to determine a polynomial P(X;,...,X,) € F[X] where we know thai each X;
does not appear to degree higher than d and that there are { non-zero monomials

[nterpolating Polynomiais from Thewr Values 39)

in P. Furthermore, we assume that we can compute the value of P given a
value for X. Ii is convenient to consider just one stage of the interpolation. The
computation of P(X) being just a sequence of n stages.

Now assume that we have performed the first k — 1 stages of the sparse
modular algorithm and we are about to begin the kth stage. From the previous
stage’s computation we have

P(‘Xl)'"9Xk~1)xk0’-~(;zno) :P_xnjfa‘ +p2()jx;é'2 + - Jr‘pTo)?é-T.

The set of exponents of P(X1,...,Xt_1,2k0,...,2Zn0) is called the skeleton of P,
which we denote by skel P. Since there are f non-zero monomials in P, the skeleton
of P can never have more than ¢ elements.

Throughout this stage, the values assigned to Xy4),..., X, do not vary. To
simplify the notation, we will omit them.® We write

P'lys,yx) = Plys, ¥k Zh41,0, -+ - Tno)-

The computation of P(X,,..., Xk_y, X) proceeds in two phases. In the first
we determine

P(Xy, .. Xio.zki) = py X + pg X5+ 4 pp, X7,

for y = 0,...,d by the following technique:

For each of d + 1 randorly chosen values of X, 2x; perform the following.
Pick a random k — 1-tuple denoted by (y1,.-.,yk-1) = ¥, such that eacl of 7% are
distinct. Since the & are known, venifying that this is the case is easy. Actually
finding 7 is discussed in the analysis of the next subsection. This value y allows
us to set up the following (non-singular) system of linear equations

P'(1,...,1,zk;) =p1j + P2j + - + pTj
P'(y:,.-»»yk L, 3k) = puTt + PP+ + iy
Py, Yby ®ki) = P + P20 4+ pTi T

Pyl . oyl zxg) = 2T+ pos i + - py it

This is a Vandermonde system of equations and can be solved by the techniques
of Section 2 in O(t?) time while requiring only O(¢) space. The result will be a
polynomial :
P(Xy, s Xee15 k5, T543,0, - - -, Zno)s

1 In practical implementations this may be more than notational. Eliminating the variables
that do not vary at this stage can save significant time when computing the values of P.

392 R. Zippel

for each of the d -+ 1 values z;;.

In the second phase, we independently interpolate the coefficients of each
monormial, using the dense interpolation algorithm. The results of these interpo-
lations can be combined to produce

P'(XI: s aXL'—-l)Xk) = Pj(Xk)ié.l '{’pg(Xk)}?g’ o +PT(Xk)X€T.

The dense interpolation yielded the wnivariate polynomials p;(X). This polyno-
mial is In turn expanded to get

P(X1,. s Xy @ht1,0, -, 2n0) = PhoX D + pho X2 + - + pro Xor,
and we are ready to begin lifting the nexi variable.

4.3 ANALYSIS
We begin by presenting the probabilistic resolution of the zero avoidance
problem. The following proposition gives a sharp estimate of how difficult it is io
avoid the zeroes of a polynomial given only degree bounds.

Proposition 9. Let k be a field, f any element of k[X,,..., Xy] such that the
degree of X; in f is bounded by d;. Let Z,(B) be the number of zeroes of f, T
such that z; € & (a set with B elements B > d;). Then

Za(B)< B —(B -~ d\)(B — o) - (B — dy)
~O((d +dy+- +da)B" 7).

Historical note: This result imitially appeared in two papers simultaneously and
independently at the EUROSAM 79 conference i1 Marseille during the sumimer
of 1979. Schwartz gave the second estimate of this proposition while Zippel gave a
version of the first. The proof given here is a simplification and extension of that
given 1n Zippel (1979).

Proof: There are at most d, values of X,, at which f is identically zero. So for
any of these d,, values of X,, and any value for the other X;, f is zero. This comes
to d,B"~!. For all other B — d,, values of X, we have a polynonual in n — 1
variables. The polynomial can have no more than Z,.,(B) zeroes. Therefore,

Zo(B) < duB") + (B = dy)Zn_1(B).

Rather than solving this recurrence for Z,, we solve it for N, = B" — Z,.
Since Z; is less than or equal to dy, N3 > (B — dy). This is the basis step of the
inductive proof. Writing the recurrence in terms of N, we have

B™ — Np(B) < dpB""! 4 (B - d,)(B"™? — N.,_(B))

Interpolating Polynomials from Their Yalues 393

or

Nu(B) > (B — d.)N,_,(B),

from which the proposition follows. []
Polynomials of the following actually have B” — (B —d,)--- (B — drn) zeroes
with components less than B

X X)) =] Ka-as) o J] (Xa = 2min):

0<iy <d, 0<in<dy,

Thus the inequality in the proposition cannot be further strengthened. The fol-
lowing corollary phrases this result as a probahility.

Corollary. Let fi,fs,...,f, be elements of k[X1,...,X,], where the degree in
each variable is bounded by d. Let P(fy,..., f,) be the probability that a randomly
chosen point % is a zero of any of the f;, where z; is an element of a set with B

clements. Then
nds

'p(flw--,fs><*B—-

Proof: Let f = fi fo-+ fs. The degree of each variable in f is bounded by ds. Ap-
plying the previous proposition, we see that the number of zeroes of f is bounded
by ndsB™~!, for sufficiently large B. Since there are B" possible £ to choose from,
we have the corollary. [:I

This corollary gives the probabilistic solution to the zero avoidance problem.
Let P be an element of Z[X,,...,X,]. Choose a random point in Z™ with com-
ponents less than B. The probability that this point will be a zero of P is less
than
nd
T

Thus to keep the chance of error below €, using a single evaluation, we must choose

B>—.
€

Turning now to the sparse modular interpolation algorithm, if all the proba-
bilistic assumptions hold, the cost of lifting a single variable can be computed as
follows. In phase 1 we compute d + 1 polynomials at a cost of at most ¢ evaluation
points each, requiring O(dt?) time and O(dt) space. The dense interpolation in
phase 2 requires O(d*) steps for each coefficient that is interpolated. At most ¢
such interpolations are performed so a total of O(#d?) steps are required. Since n
stages need to be performed the total time requirements are O(ndt(d + t)), while
the maximum space requirement is always O(dt). Remember that ¢ is the actual
number of terms in P, not an a priori bound on the number of terms in P.

394 R. Zippel

As we shall see, the chance for error in the interpolation depends entirely on
the initial evaluation point (zy9,Z20,..-y2Zno). By performing several interpola-
tions with different initial points we can decrease the chance of error. This may
be appropriate in practical implementations. Here we use ¢ to denote the chance
for error from a single starting point. We assume P is a polynomial over a finite
field, F,. We want to determine ¢ as a function of ¢, d, n and t. In practical
implementation, P will most likely be a polynomial over Z. Then ¢ is chosen to
minimize ¢ and still remain efficient. To convert from a solution in a finite field to
one over the integers a coefficient bound is necded for the solution in Z. In this
section we ignore these issues. From a theoretical point of view, we continue to
compute in Z (or Q as necessary), and restrict our random choices to integers less
than ¢.

There are two sources of potential error in this algorithm. First, the structure
inherited from earlier stages in phase 1 structure may be incorrect. That is, a term
that was assumed to be zero really wasn’t zero. To be precise, consider a three
variable problem. Assume the polynomial to be computed is

n(Y,2)X +p(Y, 2)X* + - + pe(Y, 2) X%,

and the initial evaluation point is (zg, %0, %0). After the single variable interpola-
tion computed in stage one we have the polynomial

P1(¥0,20) X + pa(yo, 20) X + -+ + pe(yo, 20) X .

In passing from the one variable case (X) to the two variable case (X, Y7), the
algorithm just presented assumes the structure given above is correct. If p; van-
ished at (yo,20) we would have assumed e; was zero erroneously. At the end of
this stage we will have the bivariate polynomial

0 (20) XYY 4+ q(2)(X, V) 4+ qulz0)(X, Y.

Again, if any of the ¢; vanish at z; we will get erroneous results. To compute the
exponent vectors correctly, we need to assume that the p; and ¢; do not vanish
at the initial point (29,0, 20). These are the polynomials whose zeroes we must
avoid.

At the ith stage of the interpolation process, there are at most ¢ polynornials
in n—1 variables whose zeroes must be avoided. The aggregate number of non-zero
terms these polynomials contain must be less than 1. The degrees of each poly-
nomial is bounded by d. So by proposition 9, the chance of the initial evaluation
point being the zero of any of these is

n?dt
.

Interpolating Polynomials from Their Values 305

Now consider the probability that the Vandermonde systems are singular.
These systems are of rank at most i. By the corollary to proposition 8, the
probability that this system is singular is

d-t-(1-1) d?
20¢-1) 2g

At each stage there are d such systems to be solved and there are n — 1 stages in
all, so the probability that one of them will fail is bounded by

nd?1?
-

Thus we have the following proposition.

Proposition 10. Let P be a polynomial in n variables, each of degree no more
than d and with ¥ (>> n) non-zero terms. Assurne the coefficients of P lic in a finite
field with q elements. The probability that the sparse interpolation algorithm will
give the wrong answer for this polynomial is less than

nd*t?
T

The randomly chosen values must be chosen from a set of at least

nd?t?

€

values for the probability of error to be less than ¢

Since we cannot know the true number of non-zero terms of P before beginning
the algorithrn, the random values must be chosen from a set of

nd?T?

&

points.

5. Deterministic Zero Avoidance

As mentioned earlier, proposition 2 shows that univariate polynomials over
the rational integers cannot have many real zeroes. We extend this proposition
to one for a multivariate polynomial in the variables X; by finding a substitution
(X; — Z¢) that sends a multivariate polynomial into a univariate polynomial.
We then apply the proposition to the univariate polynomial to get our result. The
crucial part of the proof is to show that we can find a substitution such that P(Z¥?)
is not identically zero.

396 R. Zippel

Before, proceeding with our version of the bounds, it is jnstructive to examine
the bound derivable from Kronecker’s technique, van der Waerden (1953). We are
given a polynomial in n variables, P(X;,...,X,) where the maximum degree in
any one variable is d and assume there are no more than T non-zero terms in
P. Let £ be an integer larger than d. Consider the substitution, X; ~s Z¢ ', A
monomial X? is mapped to a monomial in Z raised to the power:

e; + ed + 6352 R 5 Etn(,m—l.

Since each of the e; are strictly smaller than £ this mapping is one to one and
invertible.

Furthermore, we haven’t changed the number of non-zero terms in the poly-
nomial, i.e. terms(P(X)) = terms(P(Z)). By proposition 1, if P(Z) vanishes for
T positive values of Z, then it (and thus P(X)) is identically zero. This would
be our desired proposition if the values chosen for the X; were small enough. The
smallest integer values we can choose for Z are 1,2,...,T. Thus the values for X;

are
i~=1 i=1 i—1
L O -

Unfortunately, the size of the largest substitution, 7¢"' js exponential in the
number of variables.

This basic idea can be salvaged by a more flexable choice of exponent substitu-
tions. Rather than using an invertible substitution, as Kronecker does, we choose
one that merely guarantees that P(Z) is not identically zero if P(X) is not. In
light of the results of Ben-Or and Tiwari the importance of this result is somewhat
diminished. However the technique used to reduce a multivariate polynomial to a
univariate polynomial, while preserving the number of non-zero terms seems quite
powerful.

We begin with a definition and some lemmas.

Definition: 1. Let A be a set of n-tuples with components in a ring R. A is
said to be maximally independent if every subset of n elements of A is R-linearly
independent.

In our situation, each element of A, &, corresponds to a substitution X; —» Z4i,
The following lemma shows that there exist sets of N maximally independent n-
tuples with entries not much larger than N.

Lemma 1. Let S be a positive integer, and p the smallest prime larger than S.
There exists a maximally independent set of S n-tuples with componenis in Z
where each of the components of the n-tuples is less than p.

Proof: First we show that we can construct arbitrarily large maximally indepen-
dent sets of n-tuples. Then by reducing them modulo a prime we get the n-tuples

Interpolating Polynomiais from Their Values 397

required by the lemma. Consider n-tuples of the form (1,k,k%,...,k*™1). For n
of these to be independent the determinant of the mairix

1 ke ko kT
1 ky k2 - E37
1 k. k2 kn—?

must not be zero. Since this is a Vandermonde matrix, its determinantis [] ;o (ki—
k;), by proposition 3.

Thus if the k; are distinct the vectors they generate will be linearly indepen-
dent. In particular if we let @ = (1,k,...,k" 1) then any subset of n of the @
will be hinearly independent. Furthermore, if we reduce the elements of 4 by a
prime Jarger than any of the k, the n-tuples remain maximally independent. []

Lemma 2. Let L(f) — 1. X be a linear form in the n variables X, that is not
ideniically zero. If py,...,pn are linearly independent n-vectors, then L(p;) # 0
for some 1.

Proof- Since the n-tuples 7; = (pn,pi2,. - - s Pin) are linearly independent, the ma-
trix

Prv P12 0 Pin
P21 P22 ' P2n
A= .)
pnl Pn2 Yo pnn
is non-singular. Denote by w the column vector (wy,. .., wn)T. I L vanishes at
each of the n-tuples p; then
A -w=0.

Since A is non-singular, & must be identically zero. []

Lemma 3. Let L;j(X) = @; - X be a set of T linear forms in n variables X;,
where none of the forms is identically zero. There exists a sei of (n — 1) - T + 1
n-tuples such that for one of these n-fuples none of the L; vanish. Furthermore,
the components of these n-tuples can be chosen such that each component is less
than 2nT.

Proof: By the previous lemma, each L; can vanish at no more than n — 1 mde-
pendent n-tuples. Assuming none of the forms vanish at the same n-tuple, there
can only (n — 1) T n-tuples for which one of the forms vanish. []

This Lemma can be extended somewhat to give a estimate of the number of
n-tuples required to ensure that each linear form takes on a distinct value. This
is important enough to justify calling it a proposition.

398 R. Zippel

Proposition 11. Let L;(X) = ;- X be a set of T distinct linear forms in n
variables X;. There exists a set of

(5 =T)= B (T =1)

1
5 +

n-tuples such that each L; takes on a different value for at least one of them, and
where the components are each less than nT(T — 1).

Proof: Consider the set of forms
My = (0 — ;) - X,
Ignoring the diagonal forms (M;;), which are identically zero, there axe T(T' —1)/2

distinct forms up to sign. L; and L; have the same value for some n-tuple, if and
only if M;; vanishes at the same n-tple. By Lemma 3, there exists a set of

(n=1)-T-(T-1)
2

n-tuples such that for one them, none of the #f;; vanish, and each has components

less than nT(T —1). []

Proposition 12. There exists a set of nT? n-tuples such that there is no poly-
nomial with less than T non-zero terms that vamshes at each of the n-tuples.
Furthermore, the absolute value of the components of the n-tuples is less than
7?7 and they have size O(nTlog T').

This proposition i1s proven by applying the same type of reasoming used earlier
with Kronecker’s trick, using a sufficiently large, maximally independent set of
n-tuples.

Proof: Assume P(Xy,...,X,) is not identically zero and let the terms of P be
P(X) = 1 X8 40X 4o depXET,
The substitution X; = Z* sends this polynomial into
P(Z)= e, 25T 4 2% 4o o ep 2% 7

This substitution must be chosen so that P(Z) is not identically zero. This can
be done by requiring that for any ¢ % 1

or equivalently (&; — &) - @ # 0.

Intempolating Polynonnals from Their Values 399

By Lemma 3, we can choose a set of (n ~1){T —1)+1 maximally independent
n-tuples such that one of them satisfies (¢; — &) - @ # 6. Wec can bound the
components of % by p where p be the smallest prime larger than (n—-1)(T-1)+1.
Notice that p < 2nT.

BEach of the n-tuples gives rise to a mapping from P()?) to P(Z). Since P(Z)
has no more than 7" monomials, we need not try more than T positive integer
values for each #. In particular we can use the values 1,2, ..., 7T for Z. Thus there
exists a set of (n — 1)(T — 1)T + T < nT? points that satisfies the requirenents
of the theorem. Furthermore, each component of the substitution is bounded by
Tr <77]

Proposition 13. There exists a set of nT? n-tuples, whose components are of
size O(nT log T'), such that for every set of polynomials P; € Z[z,, ..., x,] with

> terms(Py) < 7,

there is at least one n-tuple where none of the polynomials vanish.

This proposition follows from proposition 12 and the observation that if ¢; +
.o+ + 1, = T, then the waximum value of 12 + ... + {2 is T2,

The remaining result in this section is due to Ben-Or and Tiwari (1988). By
using a direct multivanate approach to the zerc-avoidance probleia, they improve
the O(nT?) result of proposition 12 for the zero avoidance problem to T', which is
best possible. Ben-Or and Tiwarl’s main idea for this problem is contained in the
following proposition.

-~
-

Proposition 14. Let P(X) be a non-zero polynomial in R[X] with at most T
terms and with monomial exponent vectors &;. Assume there exists an n-tuple &
such that the % are distinct. Then not all of P(2°), P(Z), P(z%),...,P(zT—1)
are zero.

Proof: Denote % by m;. By assumption, each of the m; are distinct. o P
vanished at each of the Z* then the following systemn of linear equations would
hold.
cg+er+-cp=0
cymy Feamg 4 Fermr =0

clmf+c2m§+-.-+chgr=0

T—1 T-1 =0

Cy m?“l +camy SRR Sy o0 £

Since this is a Vandermonde system and we have assumed that the m; are distinct,
the system of equations is non-singular. Thus the ¢; must all be zero, and P must
be identically zero for all of P(%), P(2%), P(*),...,P(3T7") to vanish. []

400 R. Zippel

The key then is finding a substitution that keeps the monomials distinct.
If P is a polynomial over a unique factorization domain (such as the rational
integers) then this is relatively easy—we choose the componeats of to be distinct
primes. In this case each of the m; must be distinct by unique factorization. For
polynomials over finite fields estimates of the difficulty in finding such the right
initial substitution can be made form proposition 7, but this leads to a probabilistic
algorithm.

The following proposition considers the zero avoidance problem for several
polynomials.

Proposition 15. Let Py(X),..., P.(X) be non-zero polynomials in U[X . . Xk
U a unique factorization domain and assume that terms Py, 4 - - - + terms Py = T.
Let # be a vector of n primes in U. Then for integer j, 0 < j < T, all of Pi{(77)
are different from zero.

Proof: Denote the poinis {£°,%,...,%7} by A. P; cannot vanish at more than
terms P; elements of A by proposition 5. Since A contains T + 1 points, there
must be one for which none of the P; vanish.

6. New Interpolation Algorithm

Using either of the deterministic solutions of the zero avoidance problem given
in the previous section (propositions 13 and 15), it is possible to modify the prob-
abilistic sparse polynomisal interpolation algorithm of section 4 to make 1t deter-
nunistic.

As usual, we wish to interpolate a sparse polynomial with no more than 7°
non-zero terms, P(X) € F[Xi,...,X,], from its values. As in the last section
we will only consider the case when F is the rational integers or a finite field
of sufficiently large characteristic. For simplicity our discussion will use F = Z.
Thus we can guarantee that the Vandermonde systems of equations are always
non-singular, by using as the initial starting point: (2,3,5,...,pn), where p, is
the nth prime.

The only remaining source of erroneous answers in the probabilistic algorithm
of section 4, is that coeflicient polynomials may vamish at the starting point. To
be more precise, assume the starting point of the interpolation is x4, 220,...,%no-
Consider stage k, where we arc introducing X;. We can write P(X) as

P(-X:) =I"Ik(-<}‘-rk+11"'1Xn)(Xl,--.,Xk) (RSFER
K X K

If the polynomials p;x do not vanish at the starting point, then skeleton produced
at stage k will be a correct image of skel P. If this is the case we say the starting

Interpolating Polynomials from Their Values 40]

point is a stage k good starting point. If the starting point was not good, then
the resulting skeleton will be strictly smaller than the correct one s that stage.

The deterministic version of the sparse modular algorithm assumes that at
stage k — 1, the polynomial it is given has the correct skeleton. It then produces a
k variable polynomial that has the correct skeleton, by ensuring that it hias used a
starting point for which none of the p;; vanish. This is easily done by performing
the operations of stage k, 7' times, using ($i+1,o= .., 234) as the values for the
undetermined variables. Since the total number of terms in Pt not greater than
T, by proposition 14, one of these starting points will be stage k good. Since we
know the correct k — 1 skeleton it is not necessary to repeat lower stages of the
algonthm.

Thus this algorithm will require T' times more operations than the proba-
bilistic version. The components of the evaluation points are always primes (or
a random integer for X,). Thus the largest component will be p., whose size is
approximately O(T logn).

7. Conclusions

We have presented new deterministic solutions to both the zero avoidance
problem and the interpolation problem for sparse polynomials. The zero avoidance
technique of proposition 13 reduces multivariate problems to univanate problems.
The interpolation algorithm presented may have better performance than Ben-Or
and Tiwan'’s interpolation algorithm if the bound on the number of terms is not
sharp.

Unfortunately, these deterministic results do not immediately yield determin-
istic algorithms for the multivariate polynomial greatest common divisor (GCD)
and factorization problems. For the GCD problem a technique for avoiding the
zeroes of the resultant of the two polynomials is needed. Unfortunately, straight
forward estimates of the number of terms of the resultant are exponential in the
number of variables even if the original polynomials were sparse. For the factor-
ization problem, using the current techniques, there still remains the need for an
effective version of the Hilbert Irreducibility theorem with good constants. The
existing versions give probabilistic results, von zur Gathen (1983), Heintz and
Sieveking (1981) and Kaltofen (1985b).

8. Acknowledgements

This work benefited greatly by discussions with Barry Trager. The one dimen-
sional version of these ideas, Proposition 2, was suggested by Gregory Chudnovsky.
The key idea in Lemma 1 was suggested by Carlo Traverso. Prasoon Tiwari was
very generous in clarifying his and Ben-Or’s results. Two anonymous referees pro-
vided many valuable comments and suggestions. Their efforts have significantly
improved the presentation.

402 R. Zippel

This report describes research done jointly at the Artificial Intelhgence Labo-
ratory and the Laboratory for Computer Science of the Massachusetts Institute of
Technology. Support for the Laboratory’s artificial intelligence research is provided
by the Advanced Research Projects Agency of the Department of Defense under
Office of Naval Research contract N00014-86-K-0180. Work done in the Labo-
ratory for Computer Science was supported by the Advanced Rescarch Projects
Agency of the Department of Defense under Office of Naval Research contract
N00014-83-K-0125.

Preparation of this report was supported by the Advanced Research Projects
Agency of the Department of Defense under Office of Naval Research contract
N00014-86-K-0591, the Mathematical Sciences Institute under contract U03-
8300, the National Science Foundation through contract DMC-86-17355 and ihe
Office of Naval Research through contract N00014-86-IK-0281.

References

Ben Or, M. and Tiwari, P. (1988). A Deterministic Algorithm for Sparse Multivariate
Polynomial Interpolation. 20th Symposium on the Theory of Computing, 301-
309.

Brown, W. S. (1971). On Euclid’s Algorithm and the Computation of Polynomial Great-
est Common Divisors. J. Assoc. Comp. Mach. 18/4, 478-504.

Gantmacher, F. R. (1959). The Theory of Matrices, Chelsea Publ., New York.

von zur Gathen, J. (1983). Factoring Sparse Multivariate Polynomials. Proceedings,
IEEE Symposium on the Foundations of Computer Science, 172-179.

von zur Gathen, J. (1985). Irreducibility of Multivariate Polynomials. J. of Computer
and System Sciences 31, 225-264,

von zur Gathen, J., Kaltofen, E. (1885). Factoring Sparse Multivariate Polynornials. J.

Grigoriev, D. Yu. and Karpinski, M. (1987). The Maiching Problem for Bipartite Graphs
with Polynomially Bounded Permanents is in NC. Proceedings of the 28th IEEE
Symposium on the Foundations of Computer Science, 166-172.

Heintz, J., Sieveking, M. (1981). Absolute Primality of Polynomials is Decidable in
Random Polynomial Time in the Number of Variables. Lecture Notes in Computer
Science, vol. 115, 16-28.

Kaltofen, E. (1985a). Polynomial-Time Reductions from Multivariate to Bi- and Uni-
variate Integral Polvnomial Factorizations. SIAM J. of Compuiing 14, 469-489.

Kaltofen, E. (1985b). Computing with Polynomials given by Straight-Line Programs
I; Greatest common divisors. Proceedings, 17¢th ACM Symposium on Theory of
Computation, 131~142.

Kaltofen, E. (1987). Factorization of Polynomials Given by Straight Line Program:s..

Kaltofen, E., Yagati, L. (1988). Improved Sparse Multivariate Polynomial Interpolation
Algorithms, Report 88-17, Department of Computer Science, Rensselaer Poly-
technic Institute, Troy, NY.

Moses, J., Yun, D. Y. Y. (1973). The EZGCD Algorithm. Proceedings of ACM National
Conference, 159-166.

Interpolating Polynomials from Their Values 40.

Pdlya, G., Szego, G. (1976). Problems and Theorems in Analysis, Springer-Verlag, New
York.

Press, W., Flannery, B. P., Teukolsky, 3. A., Vetterling, W. T. (1986). Numerical Recipes
The Art of Scientific Computing, Cambridge University Press, Cambridge.

Rosser, J. B., Schoenfeld, L. (1962). Approximate Formulas for Some Functions of Prime
Numbers. Illinois Journal of Mathematics 8, 6494,

Schwartz, J. T. (1980). Probabilistic Algorithms for Verification of Polynomial Identities
J. Assoc. Comp. Mach. 27, 701-717.

Tiwari, P. (1987). Parallel Algorithms for Instance of the Linear Matroid Parity with
Small Number of Solutions, IBM Research Report RC 12766, IBM T. J. Watsor
Research Center, Yorktown Heights, NY.

van der Waerden, B. L. (1953). Modern Algebra, F. Ungar Publ. Co., New York.

Wang, P. S.—-H., and Rothschild, L. P. (1975). Factoring Multivariate Polynorials ove:
the Integers. Math. Comp. 29, 935-950.

Wang, P. S.-H. (1978). An Improved Multivariate Polynomial Factoring Algorithm
Math. Comp. 32, 1215-1231.

Zippel, R. E. (1979). Probabilistic Algorithms for Sparse Polynomials. Lecture notes in
Computer Science 72: Symbolic and Algebraic Computation, 216-226.

Zippel, R. E. (1980). Newton’s Iteration and the Sparse Hensel Algorithm. Proceeding;
of SYMSAC’80, 68-72.

