MATH 895, Assignment 4, Summer 2019

Instructor: Michael Monagan

Please hand in the assignment by 5pm June 21st.
Late Penalty -20% off for up to 72 hours late. Zero after that.

Question 1: Minimal polynomials. [10 marks]

(a) Using linear algebra, find the minimal polynomial $m(z) \in \mathbb{Q}[x]$ for

$$
\alpha=1+\sqrt{2}+\sqrt{3} .
$$

(b) Using the extended Euclidean algorithm compute the inverse of α i.e. $[z]^{-1}$ in $\mathbb{Q}[z] /(m)$.
(c) Let α be an algebraic number and $m(z)$ be a non-zero monic polynomial in $\mathbb{Q}[z]$ of least degree such that $m(\alpha)=0$.
Prove that $m(z)$ is (i) unique and (ii) irreducible over \mathbb{Q}.

Question 2: Computing with algebraic numbers. [10 marks]

Let ω be a primitive 5 th root of unity in \mathbb{C}. Consider the following linear system

$$
\left\{(\omega+4) x+\omega y=1, \omega^{3} x+\omega^{4} y=-1\right\}
$$

(a) Input ω in Maple using the RootOf representation for algebraic numbers and solve the linear system using the solve command.
(b) Now solve the system modulo $p=31,41,61, \ldots$ and as many primes p as you need s.t. $5 \mid(p-1)$. After you've done this you will recover the solutions using Chinese remaindering and rational number reconstruction. Use Maple's ichrem and irratrecon commands.
For each prime factor $m(z)=z^{4}+z^{3}+z^{2}+z^{1}+1 \bmod p$ and solve the linear system modulo p by evaluating at the roots of $m(z)$ in \mathbb{Z}_{p}. Then using Chinese remaindering (interpolation) recover the solutions $\bmod m(z)$.
To compute the roots of $m(z)$ in \mathbb{Z}_{p} use the Roots (m) mod p command.
To solve $A x=b$ over \mathbb{Z}_{p} use the Linsolve (A, b) mod p command.

Question 3: Cyclotomic polynomials. [8 marks]

The n 'th cyclotomic polynomial $\Phi_{n}(x)$ is the minimal polynomial for the primitive n 'th root of unity. I've computed some of them below.

```
> with(numtheory):
> for n from 1 to 10 do
> printf("%25a %50a\n",cyclotomic(n,x),factor(x^n-1));
> od;
```

```
            x-1 x-1
```

 x-1 x-1
 x+1 (x-1)*(x+1)
 x+1 (x-1)*(x+1)
 x^2+x+1 (x-1)*(x^2+x+1)
 x^2+x+1 (x-1)*(x^2+x+1)
 x^2+1 (x-1)*(x+1)*(x^2+1)
 x^2+1 (x-1)*(x+1)*(x^2+1)
 x^4+\mp@subsup{x}{}{\wedge}3+\mp@subsup{x}{}{\wedge}2+x+1 (x-1)*(x^4+\mp@subsup{x}{}{\wedge}3+\mp@subsup{x}{}{\wedge}2+x+1)
 x^4+\mp@subsup{x}{}{\wedge}3+\mp@subsup{x}{}{\wedge}2+x+1 (x-1)*(x^4+\mp@subsup{x}{}{\wedge}3+\mp@subsup{x}{}{\wedge}2+x+1)
 x^2-x+1 (x-1)*(x+1)*(x^2+x+1)*(x^2-x+1)
    ```
            x^2-x+1 (x-1)*(x+1)*(x^2+x+1)*(x^2-x+1)
```



```
                    x^4+1 (x-1)*(x+1)*(x^2+1)*(x^4+1)
```

 x^4+1 (x-1)*(x+1)*(x^2+1)*(x^4+1)
 x^6+x^3+1
 x^6+x^3+1
 x^4-x^3+x^2-x+1
 x^4-x^3+x^2-x+1
 (x-1)*(x+1)*(x^4+x^3+x^2+x+1)*(x^4-x^3+x^2-x+1)
    ```
    (x-1)*(x+1)*(x^4+x^3+x^2+x+1)*(x^4-x^3+x^2-x+1)
```

Devise an algorithm for computing $\Phi_{n}(x)$ which does not factor $x^{n}-1$ and test your algorithm for $1 \leq n \leq 12$. You may assume $\Phi_{1}(x)=x-1$.

Question 4: Trager's algorithm. [6 marks]

Let ω be a primitive $\mathbf{4}^{\prime}$ 'th root of unity. Using Trager's algorithm, factor $f(x)=x^{4}+x^{2}+2 x+1$ and $f(x)=x^{4}+2 \omega x^{3}-x^{2}+1$ over $\mathbb{Q}(\omega)$. Use Maple's RootOf notation for representing elements of $\mathbb{Q}(\omega)$ and Maple's $\operatorname{gcd}(\ldots)$ command to compute gcds in $\mathbb{Q}(\omega)[x]$.

Question 5: Square-free norms. [6 marks]

To factor $f(x)$ over $\mathbb{Q}(\alpha)$, Trager's algorithm chooses $s \in \mathbb{Q}$ such that the norm $N(f(x-s \alpha))$ is square-free. Theorem 8.18 states that only finitely many s do not satisfy this requirement. Give a characterization for which s satisfy this requirement in terms of resultants.
Hint: $n(x)$ is square-free iff $\operatorname{gcd}\left(n(x), n^{\prime}(x)\right)=1$ where $n(x)=N(f(x-s \alpha))$.
Using your characterization, for $\alpha=\sqrt{2}$ and $f(x)=x^{2}-2$, find all $s \in \mathbb{Q}$ for which the $n(x)$ is not square-free. Repeat this for the factorization problems in question 4.

