
A Deterministic Algorithm For Sparse Multivariate Polynomial Interpolatiorl

(Extcntlcd Abstract)

Michael Ben-Or Prasoon Tiwari
Hcbrcw University I. B. M. Thomas J. Watson Rcscarch Ccntcr

Jcrusnlcm, Isr-acl Yorktown Heights, NY 1059X

i\hstract: An cfficicnt. tlclcrministic tiolynomi:lI time al-

gorilhni is tlc~clopctl for the spnrsc polynomi;tl inlcrpo-

htion problem. The numhcr of cv;~lu:~lions nccdcd by

this algorithm is very small. The algorithm also has a

simple NC implcmcntation.

I. Introduction

In this paper, WC consider the following scenario.

WC arc given a black-box which contains a multivarialc

polynomial P(x,, x,J with real (or complex) cocffi-

cicnts.

I‘hc black-has l;tkcs as inpul :111 rr-tuplc (/I,,, /I,,) ;~ntl

~~~Ilpllts tt1c \:llllc r(p,, . . . . /I,& WC ;1rc also InId that 

I’(.Y,..... .\.,I) has aI most f n0tI%cf’cr cocftkicnts (i.e., it is 

spnrsc). Given this information, wc must dclcrminc all 

the cocfficicnls of the polynomial. This is the classical 

sparse multivariate polynomial interpolation problem. 

Efficient algorithms arc known for this problem 

which use randomization. Until recently, no 

deterministic polynomial time algorithm was known for 

this problem. A polynomial time algorithm for this 

problem was given by Tiwnri (19871~). In this paper, WC 

prcscnt an ~ljli’(~iolf &tcwrrittistic pc~tynomint lime atgo- 

rithm for this problem which improves the algorithm tluc 

to Tiwari (1987b). The running time of our algorithm is 

polynomial in the length of the output and this algorithm 

has an NC implementation. The main ingredients of our 

dctcrministic algorithm arc: (i) a decoding algorithm for 

BCH codes (see, for example, Blahut, 1984), (ii) a novel 

technique of substituting distinct primes for various var- 

iablcs due to Grigoriev and Karpinski (1987), and (iii) 

an cfficicnt algorithm for finding roots of polynomials 

which have only intcgcr roots (Loos, 19X3; Pan and Ricf, 

19X7). 

To the best of our knowlctlgc, the best prcviousty 

known algorithm for this prohlcm is due to Zippcl (1971) 

(see Kaltofcn, 19X6, for a rclalctl algorithm). The foi- 

lowing table compares this algorithm to our new algo- 

rithm. Here t is an upper bound on the number of 

monomials, d is an upper bound on the degree of any 

variable, n is the number of variables, and E is the prob.- 

ability of failure. The number of operations is counted 

on an algebraic RAM. 

Our algorithm has a simple NC implementation. 

This is in contrast to the fact that Zippel’s probabilistic 

algorithm, which performs interpolation variable by var- 

iable, is inhcrcntly scqucntiat and requires n sequential 

phnscs for comptclion. Our results immcdiatcly imply 

the following rcccnt rcsulls: (i) the result of Grigoricv 

and Knrpinsky (19X7) that if the number of pcrfcct 

301 



Type of Algorithm 
-~ 

Number crf Operations 

Number of Evaluations 

Size of Evaluation Points in bits 

Paralleliza.ble 

Zippcl’s Algorithm. Our Algorithm 

Probabilistic Dctcrministic 

ndt’ t2( lng2t + log nd) 

ndt 2t 

w I$) t Ing n 

No Yes 

matchings in a graph is polynomially bounded, then they 

can all be dctcrmined in NC; and (ii) a generalization 

(luc to Tiwari (I9X7aj that if the numhcr of full- 

dimensional solutions of a linear matroid parity is 

polynomialfy bounded, then thcy can all bc dctcrmincd 

in NC. Morcovcr, the total number of cvafuations pcr- 

formed by our algorithm is linear (exactly 2f), compared 

to at least quadratic evaluations in the above mcntioncd 

results, whcrc t is the number of pcrfcct matchings (or 

the full-dimensional solutions). If P(xt, x2, . . . . -II,) has 

integer coefficients, then WC could talk of the the bit 

complexity of our algorithm. In this case, the bit com- 

plexity of our algorithm is polynomially bounded. Our 

algorithm does not require a priori knowledge of the de- 

gree d. 

We also prove that the number of evaluati.ons can 

not bc rctlucctl below 2t for a large class of interpolation 

algorithms, and our algorithm is in this class. 

Our algorithm also sheds light on an old problem 

rclatctl to ;I problem of Etlmtmtls (1967) (see also IAV:IZS 

1379). Suppose A is an II x n matrix, each of whose cn- 

tries is a multivariatc polynomial. Is it possible to check 

cfficicntly whether det(A) = O? Even if an upper bound 

ton the number of monomials occurring in det(A) is 

known, no polynomial (in 1) time algorithm is lcnown for 

dctcrmining the cocfficicnts of d&(A). The obvious al- 

gorithm of evaluating the tlctcrminant may fail hcc:rusc 

some intcrmcdiatc polynomials may bc very dcn.sc. Out 

results provide a polynomial time algorithm to solve this 

last problem. In cnntrnst, the problem of tlctcrminin~ 

the number of terms in :I m111tiv:rriatc polynoni:tI which 

is given as the tlctcrmin:tnt of :I matrix is known IO hr 

I/P-Complctc (K:rllofcn IOXfi). 

Another surprising result, discussed in Section 8, is 

as follows: Given a black-box containing a polynomial 

f(x) in n vnr~i:tl~l~s with all cocfficicn 1s /)/~ifirr. t hcrc is 

a pol’(,z, t, +timc algorithm for dctcrmining P(x) \vhcrc 

d, and t arc tlic (unknown) clcgrcc. and the (llilkr~c~\vll) 

niinil,cr nf monomials appearing in f(U). WC :tISo prH:- 

cnt a c(jllcctiorl of inter-polation prc~hl;nls whose will- 

plcxity is open. For more rcccnt work on rclatcd 

problems, also see Kaltofen and Tragcr (1987). and 

Zippcl (1988). 

Z.Detinitions and Notations 

Let P(x~, ~2 ,..., x,J = i UiMi(X I,,..) x,), where 

Mi = xpi’...x~, are the t dts met monomials appearing 
bf. 

in P(xt, x2 ,..., x,J, and ati E Z , ai E C. We say that 

P(x,, x2 ,...) ~,r) is a t -sparse multivariate polynomial. _ 

Let k be the exact number of nonzcro coefficients in 

f(.x,, .r2 ,._., I,,). Given a black-box, the hnund t such 

that k < t , and the numhcr of variables II. the s~~arsc* irl- 

tctphfiorr prohlcm is to dctcrminc “i f 0 and 01~1 for 

;E 1.2 , . . . . /i , I = I ,... ,/I. WC will also writr 

/‘(.r,, x2 ,..., .r,J :1x f(x). 

WC will dcnotc the i-th prime integer by pi WC 

evaluate the polynomial f(x) at the Z!t points given by 
. . . 

ui = (pf, pi ,..., I):) , for i = 0,1,2 ,..,, 2t - I. Let vi = f(z4J. 

Our model of computation is an algcbrnic RAM. 

In one step, the processor can access any memory lo- 

cation or cxccutc ‘1 I- ( ? -7x, or / opt*i-at ion on two real 

numbers slorctl in its rcgistcrs. In our algorithm, WC will 

also ncctl to compute n mod h whcrc t7 nntl h arc intc- 

gcrs. Wc nssumc lhat this 0pcr:rfion t;rkcs only one‘ sfcp. 

‘This can hc ilonc if rounding is pct~niitlctl as one in- 

struction on the RAM. 

302 



XThc Algorithm 

In this section, WC will conaidcr the case k = t . The 

case k < I will bc rcsolvcd in the next section. Our aim 

is to reconstruct f(x) using only the 2/ numbers vi. 

The algorithm can be partitioned into two phases. 

In the first phase, we determine the exponents eij, and 

then in the second phase we &term& the coefficients 

“i. In the following paragraph, we first describe a 

method to determine the coeffcicnts, given the expo- 

nents. This is the easy second phase of the algorithm. 

Let RI be the I x t matrix defined by (M)U= (m$-’ 

. Detinc a and v to bc 7 long column vectors whose i-th 

components arc ai and Y-, rcspcctivcly. Then, the linear 

systciii Ma = v can hc sol\~~l to dctcrminc n hccausc, by 

tlic ;Ibo\,c obscr\3tion. RI is ;I tl~~llSill~lllill~ V;indcrmontlc 

In the WSI of this section, wc describe the first phase 

of our nlgor~ithm whcrc wc find all the rcquircd cxpo- 

n~~rits. This is hascd on a technique for decoding BCH 

codes (see, for example, Blahut, 1984). In order to de- 

termine the exponents involved in the i -th monomial 

.Ijj(xI, x2 ,..., x,,) = ~fi’~~~~,..x~~“, we determine 

,ni = p;“p;i2...p;in and factor it into prime powers. 

c l 1+1 ZZ Oi Lo’nj + al”‘; + . . . + A,“; f+f]. 

Summing this over all i, WC get 

= Q[ + l,q+1 + ... + ~*-[v[.+l-l + R(v[.,,(. 
This last equation gives us the linear relation we want in 

order to determine the coefftcients ,+. Let V be the t x f 

matrix defined by (V)g = vi+j_2. Define 1 and s to 

be t -long column vectors with the i-th component given 

by Ai_, and ~~+~-t , respectively. Then, by the above 

equations, V A = - s. Since V is a nonsingular matrix 

(see the next section), this system can be solved for the 

coefficients Ri ‘s. 

4. The Case k I t 

The analysis in the last section was restricted to the 

cast when k = I, i.c., the number of nonzcro cocfficicnts 

in P(x) is exactly equal to /. In this section, WC cxtcnd 

the analysis to the case when k c I, i.e., I is only an upper 

bound on the number of nonzcro cocfficicnts in f(x). 

The following lemma is the main tool in this analysis. 

Let V be the I x t matrix defined in the last section by 

(V), = Wi+j-2. Let V, be the square matrix consisting of 

the first I rows and columns of V . 

Theorem: If k is the exact number of monomials appear- 

ing in P(x), then (i) 

In order to determine the m/s, WC dcfinc a 

polynomial A(Z) = A(z - /ni) = iAizi, 1, = I . Wc will 
dct(V ,) = t {,jJnj n Cmi- mj12) 9 

SC{ I. 2, . . . . k), f.sl 4 IES i’i* i8iES 
f’w f < k; and iii) tlct(c,) -= 0, for I > k . 

Proof: Obscrvc that Vi can be writ.tcn as follows: 

303 



v, = 

1 1 . . . I 

m, m, I.. rnk 

mf rnj . . mjt 
. . . . . . 

. ,.. 
. . . . . 

?I-’ up ml- I 

CJcarly, dct( I’,) is 3 polynomial in at, NZ, . . . . ok. Let us 

dcnotc this polynomial by Q(trt, q,..., ok) . WC will prove 

part (i) of the thcorcm by tlclcrmining the cocfficicnts of 

various monomials in Q(nr, 02, . . . . a,$ 

(a) Let us dctcrminc Q(at, “2, . . . . a,, O,O, . . . . 0) where 

r < 1. Observe that if only the first r i /ni ‘S arc nonzcro, 

then rank(V,) = r < I, and th,erefore 

Q(a 1, . ..( fzp 0, 0, . . . . 0) = 0 . Hence, Q(a) dots not contain 

any monomial with less than 1 variables. 

(b) By a straight forward determinant evaluation, the 

total degree of each monomial in Q(a) is exactly 1. This 

fact, together with (a) above implies that any monomial 

occurring in Q(a) is of the form nap where 

.%{I,2 )...I k},and ISI =I. ieS 

(c) In order to cvaluatc the cocfficicnt of noi, set 

cli = 1, for i E S, and ai = 0 otherwise. Ti-k?? WC see that 

this cocfficicnt is infact the square of the dctcrminant of 

a Vantlcrmondc matrix. 

The above argument also irnplics part ‘[ii) of the thcorcm. 

. 

~‘orollary: II‘ lhc number of iionzcro coclficicnts in f(X) 

is bou~~lcd by I, then the number of nonzcro cocfficicnls 

in P(x) cqunls max 
Vi is nonsinguhr, jll 

0’1 * 

‘I’ll0 cnmplclc :rlgorithm is given in Figure I bch~w. Its 

correctness follows form the nhovc corollary. In or&r lo 

complctc the description of our algorithm, we include an 

algorithm for finding integer roots. 

5. An Algorithm for Finding Integer Roots 

In Figure 2, we present an algorithm (Loos, 19X3) 

for finding integer roots of polynomials with integer co- 

efficients. We will need the complexity of this algorithm 

in order to estimate the complexity of the algorithm given 

in Figure I. 

Sparsr I’olynoniial lntcrpoli~lioa Algorithm 

~frp~~r: A black-box containing a r-sparse polynomial in II vnriablcs. 

ourput: ~11 the monomials appearing in f(x), and their cocfficicnts. 

Algorithm: 

Step I: Evaluate the Ipolynomial at points Ui = (2’, 3’,..., pi), for i = 0, I, 2, . . . . 2t - 1. 

Let vi be its value at igi. 

Step 2: Let k be the rank of the f x t matrix V defined by (V), = Vi+j-2. 

Step 3: Solve V 1= S, where (V), = vi-i, (Il)i = pi-*, and (S)i = ~i~k-1 . 

k-l 

S&p 4: Determine the roots ml, . . . . . mk of the polynomial A(z) = xk + clizi. 

.s~Pp 5: Factor mi 7 :!nv’2...p,“’ 
i=o 

m to dctcrminc the monomi;ils prcscnt the gitcri polynominl. 

S/P/> 6: SOIVC Ma = v IO clctcrminc IIIC c~Mficicnls of Ihc given l~~~lynomi:rl, WI~CIC (M)ij -- ,111 

(a); ~: Ilj , and (V)j Vi 1 . 

k 

Figure I. 

304 



Integer Root Finding Algorifhm 

Input: A manic polynomial U(Z) E Z[z], dcga(z) = t, whose roots arc bounded by B in absolute value. 

Outpnr: The set of all integer roots of a(z). 
Algorithm: 

Step I: Evaluate the discriminant A of the given polynomial a(z). 

Step 2: Find the smallest prime p such that p does not divide A. 

Step 3: By exhaustive search, find all roots of a(z) mod p. Let S be the set of roots of a(z) mod p. 
Step 4: Let Sn = S, and compute the set 

, i+l 
Si+* = {(CL +p2b,) modp’ 1 tl E Sj, u = a(a)/p2’, v = (a’(a))-’ mod p2’, 6, = - uv mod p2’) , where a’(z) is 
the dcrivntivc of u(z), 

Sff71 5: Find the smallest i such that p2’ ’ IS larger than B, and output the set of all intcgcr roots of a(z) from 
tllc set si. 

Figure 2. 

Let us briefly discuss the complexity of the algo- 

rithm prcscntcd in Figure 2. If u(z) has degree t, then 

A < B”(‘2) , and it can be computed in U(t”) steps. Since 

the product of primes less than 1 is at least e WI , we can 

find a prime p which is at most O(t2 log B). Observe that 

1 S,] 2 t. Computing St, takes U(pt) steps. Computing 

.Si+t from Si takes O( 1 Sil (t + log p + i)) steps. Therc- 

fore, the number of steps taken by this algorithm on an 

nlgcbraic RAM is O(t3 log 8). 

6. The Number of Steps Taken by the Algorithm on the 

Algebraic RAM 

First WC analyze the algorithm as prcscntcd in Fig- 

ure 1, and then we indicate how to improve the com- 

plexity. The rank in Step 2 can be determined in O(t3) 

steps. The resulting system can be solved in Step 3 in 

U(f3) steps. In Step 4, each root of A(z) is at most 
20(dn log n) 

, therefore B 5 2°(dn’og *) . As a consequence, 

all roots of A(z), can be found in O(t3dn log n). The lin- 

car system in Step 6 can be solved in 0(t3) steps. 

Therefore, the whole algorithm takes no more than 

O(t3dn log n) steps. 

In the nbovc analysis, WC have usctl the straight 
forward :rlgorithnrs for tlcicrmining the rank. and solving 

the linear systems. Steps 2, 3,4, and 6 determine the 

comptcxity of the above algorithm. The complexity of 

these steps can be reduced by using specialized algo- 

rithms. Steps 2 and 3 can be performed in O(t2) arith- 

metic operations by using Berlckamp-Massey algorithm 

(Blahut, 1984). Root fjnding in Step 4 can bc accom- 

plished in O(t2( log’t + log nrt)) arithmetic steps using the 

algorithm of Pan and Ricf (1987). If implemented in this 

way, our algorithm for sparse multivariatc polynomial 

interpolation takes no more that. O(t2( log2t + log nd)) 

steps on an algebraic RAM. 

7. A Tight Lower Bound on the Number of Evaluations 

A nonaduptive interpolation algorithm is an in- 

terpolation algorithm which selects the points of evalu- 

ations depending only on the given bound, t, on the 

number of monomials. In contrast, an adaptive algo- 

rithm may evaluate the polynomial at some points and 

then choose the next evaluation point depending upon 

the values attained by the polynomial at previous points. 

In this section, we prove that any nonuduptive algorithm 

for sparse polynomial interpolation must perform 2t 

evaluations in the worst case. Observe that our algo- 

rithm, which is nonadaptive, matches this lower bound. 

305 



In fact, this bound holds cvcn for univariate 

polynomials. 

Theorem : Any nonndaptivc polynomial interpolation al- 

gorithm which tlctcrmincs a t-spnrsc polynomial in II 

variables must perform al Icast 21 cvatuations. 

Proof: Consider the univariatc cast. Suppose I:hc in- 

tcrpolation algorithm cvalun te the given t-sparse 

polynomial at I< Zt,points ut, u2,..., ul . Construct the 

polynomial p(x) = n(x - U~I . Observe that 

p(x) = C a,~’ has a’rhost I + 1 nonzero coefficients. De- 
i=O 

LI/ZI 

definition, p(x) = p*(x) - p2(.x) , and i,(x) is f-sparse. 

However, pt(uJ =p2(ui), for i- 1,2 ,..., I. n 

In the light of this theorem, our algorithm is the best 

possible, as far as the number of evaluations arc con- 

ccrncd. 

8. The Case When No Upper Bound on The Number of 

Monomials is Known 

In case 1 is not known, WC could try t = I, 2, 3, . . . 

but we would not know when to stop. Of course, (if the 

degree of f(x) is known, then) we could use Schwartz’s 

(1980) test to check probahilisticalfy if the polynomial 

obtained for a particular value oft is in fact equal to 

P(x). Is there some way of rnaking this test 

deterministic? 

Can we use the theorem of Section 4 in case no 

bound r on the number of nonzero monomials 3s given? 

It is known that the problem of determining th’e exact 

number of monomials in P(x) given by a black..box is 

#P-Complctc (Kaltofen 19861). Howcvcr, it dots not 

prccludc the possibility of a dctcrministic algorithm 

which dctcrmincs the number of monomials I in f’(x) in 

lime 1”(‘) . Intlccd, the pcrrnancnt of a O/I matrix can 

bc evaluated in time polynomial in its value (Gal and 

Brcitbart, 1974). 

It turns out that one can nor dctcrminc the number 

of monomials t in P(x) in time t ‘)(I) (this point will bc 

discussed at length in the full paper). In light of this fact, 

WC have the following, somewhat surprising, result: 

Lemma: Given n black-box containing a polynomial 

f(x) in II v:lria~~lcs with all cocfficicnts positive, thcrc is 

a r~J~‘(rr, 1, J)-lime algorithm for dctcrmining P(x) whcrc 

cl, and I arc the (unknown) tlcgrcc, and the (unknown) 

number of monomials appcnring in f’(x). 

Proof: Try the algorithm of Figure I for t = I, 2, 3, . . . . 

The theorem of Section 4 provides the desired stopping 

rule. If dct( VI) > 0, but det( V/+1) = 0 , then t = I. 1 

The following lemma may give some useful infor- 

mation in the general case, but it falls short of providing 

a stopping rule: 

Lemma: If the rank of VI is k, then the number of non- 

zero coefficients in P(x) is either exactly k, or it is at least 

21- k. 

Proof: Follows from the fact that the cigcnvalucs of a 

symmetric matrix intcrlcnvc the cigcnvalucs of any prin- 

cipal minor. 8 

9. Discussion and Related Open Problems 

The following lemma implies that in order to cheek 

if a univariatc t-sparse polynomial is identically zero, it 

is sufficient to evaluate it at any points i+ > 0, for 

i=l23 t , 3 ,***, * 

Lemma (see, for example, Evans and Isaacs, 1976): Let 

A be a k x k matrix given by (A)ii = .xlr/‘, where xi > 0 , 

and ri are positive integers, for i = I, 2, . . . . k. Then, A is 

nonsingular. 

It follows that in order to cheek if two univariatc t-sparse 

polynomials are identical, it is sufficient to evaluate them 

at any 2t points I+ > 0 , for i = I,2 ,.,., 2t. In other words, 

the values at thcsc 2t points uniquely detcrmincs a 

univnriatc r-sparse polynomial. Picking the specific val- 

ucs of idi, as WC have done hcrc, cnablcs us to reconstruct 

the polynomi:rI from thcsc points. Can one cfficicntly 

reconstruct :I univarialc t-SpilrSC polynomial from its 

values at any set of 2t points’! 

306 



Rational funct iohs give rise to another intcrcsting 

interpolation problem. Dcfhc a t-sparse rational func- 

tion to y Y(X) = -f$$- , whcrc n(x) = ~oJ~, and 

b(x) = cbc4 _ Then, in order to chc%‘if a t-sparse ra- 

tional tMction is zero, it is sufficient to evaluate it at t 

points, x = 1, 2 ,..., t, and hence check if the numerator is 

zero identically. Now consider the problem of checking 

if two t-sparse rational functions q(x) and Y(X) arc equal. 

By using the above lemma, WC can conclude that it is 

sufficient to evaluate these rational functions at 2t” 

points x = I ,2 ,..., 2t2 . Can this bound hc improved? 

What is a good lower bound? 

The prnblcm of dctcrmining (interpolating) a 

c-spnrsc rational function, given a black-box for cvaluat- 

ing it, is a problem that we have not been able to solve 

satisfactorily. Suppose we are given a black-box for 
4-d evaluating T(X) = - 
b(x) ’ 

where a(x), and h(x) arc as 

dcfmcd above. Furthermore, assume that ji, ri 5 d and 

d is given. Suppose it is known that the rational function 

r(x) takes on values ri at points Xi, for i = 1, 2, . . . , k. 

Then, one way of solving the interpolation problem 

would be to solve the following system for a sparse vec- 

tor: 

2 d 
I .x1 XI 

2 d 
. . . .x1 rI rlxl rIx1 . . . t-p1 

RI 

I x2 x2' .,. .xf r2 r2x2 r& 
d . . . 

. . . ‘2x2 
Rd 

., . . . . I.. *. .* ., . . ,.. I. 
41 

. . . . . . . . . . . . . . . .* . . . . . 

1 “k xi 
d 2 d 111 

. . . xk rk rpk rpk . . . rkxk 
. . . 

hd 
L - 

= 0. 

Any solution of this system with at most k/(2t) nonzero 

components will give enable US to compute r(x) effi- 

ciently. The general problem of determining if there is a 

sparse vector in the null space of a given matrix, is 

known to bc NP-Complctc. Is there an efficient algo- 

rithm for this special cast? 

Ccncralizing our results above for the cast of finite 

Fields WC cncountcr two major problems. The tirst prob- 

lcm is finding a rcplaccmcnt for the evaluation points so 

that later on WC can rccovcr the actual monomial from 

its value at these points. The second problems arises 

from the need to solve polynomial equations over the fi- 

nite field. Here there arc effrcicnt probabilistic algorithms 

but WC do not know efftcicnt deterministic algorithms 

when the characteristic of the field is large. 

Let G/Q), 4 = pk, p prime, be the finite field with 

9 elcmcnts, and let P(x) E GF(q)[x] be a polynomial of 

dcgrcc at most d having at most t monomials. First two 

of the following three casts can bc dealt with by our 

tcchniquc using only 21 evaluation points: 

Very Large Q: If the characteristic of the field is very big, 

say, p> 3 
2ndr 

, WC can USC the algorithm for the zero 

characteristic case, using the same evaluation points as 

before. Since p is so large, WC arrive at step 4 of our al- 

gorithm, with the polynomial A(z), whose coefficients are 

integers much smaller than p. Therefore, computing 

module p, we get the same polynomial as before. This 

follows immediately from the fact that the product of the 

first n primes is less than 3”. 

We can now avoid the problem of finding the roots 

of polynomials over tinitc fields whcrc only efficient 

probnOilistic algorithms arc known, by finding the roots 

of our polynomial A(z) over the real numbers just as WC 

did in the zero characteristic case 

Very Smnll 11: If the charnctcristic p is small, say, 

polynomial in nllt, then WC can find roots of polynomials 

in GF(qk) dctcrministically using Bcrlckamp’s algorithm 

(Rcrlckamp, 1970) that rcduccs the problem to solving 

polynomials over the the prime field GF(p), where a 

straight forward search can be used. The old evaluation 

points arc useless in this case and we replace them by 

picking evaluation points from extension fields. 

Using the algorithm due to Adclman and Lcnstra 

(l986), we dctcrministically find an irreducible 

polynomial j(w) e GF(q)[wf of degree at lcast e = 2nd. 

WC will use evaluation points in 

307 



c49)Cw]/l/(w))-GF(4’)~G~~~~~) . Note that if our Coppersmith, and Scot Hornick pointed out that, in 

polynomial P(x) is given by a polynomially long straight 

lint program, instead of a bl,ack-box, then this computa- 

tion rcquitcs only polynomially many field operations in 

GF(q), and can also be done fast in parallel. 

Without loss of generality we may assume that 

(7 > n, (otherwise first extend the ground field by an ex- 

tension of dcgrce log n). Let at, . . . , a, be n distinct points 

in Gi;(q). As our evaluation points we pick 

q((w - a,f,(w - a2f, . . . ,(w - a,Ji) E GF(c# for 

i=O,I )“.) 2t- I. 

LCt Mj = Xfi’ .I. Xn %I bc the i -th monomial of P(X), 

and Ict mi = M,(ut). Since the degree of w is greater than 

rfn, the rcprcscntation of mi as a polynomial in IN module 

s(w), is exactly the polynomial 

m&w - CI~)‘~’ . . . (W - a,Jain and SO mj # mj for i #j. 

Arriving at step 4 of our algorithm we can 

deterministically find the roots mi of the polynomial 

A(z), in their representation as polynomials in iv. Fac- 

toring each mi as a polynomial in the variable w into its 

linear factors we can recover the actual monomiai. 

Intermediate p: Here WC can USC the same evaluation 

points in a large enough extension field, but WC do not 

know how to find the roots of the polynomial A(z) in an 

efficient deterministic way. However, u&g the algo- 

rithm of Tiwari (1987b), we can use the similar evalu- 

ation points in an appropriate extension field, to give a 

polynomial time, but less efficient, deterministic solution. 

This algorithm also leads to NC solution of thins problem 

in all the above cases. Howl:vcr, the minimum number 

of evaluations required for interpolation over finite fields 

remains open. 

IO. Acknowledgements 

We would like to thank Noga Alon, Allan Borodin, 

Don Coppersmith, Scot Hornick, Erich Kaltofcn, 

Lakshman Yagati for discussions on topics covered in 

this paper. Don Coppersmith pointed out the similarity 

bctwccn univariatc interpolation and decoding BCH 

codes. Discussions with Allan Borodin Icd to some of the 

open problems discussctl in the pnpcr. Nogn Alon, Don 

principle, an adaptive algorithm can dctcrmine a t-sparse 

polynomial with only t + I evaluations. Erich Kaltofcn 

and Lakshman Yagati pointed out that the complexity 

of our interpolation algorithm is dominated by the com- 

plexity of the root finding algorithm. 

The second author would also like to thank Richard 

Karp for pointing out the work of Grigoricv and 

Karpinski (1986). 

I 1. Ilrfercnces 

I,. M. Adclman and I-1. W. Lcnstra, I%iding irrcduciblc 

polynomials over tinitc Bclds, Proc. of the 18th Annunl 

ACM Symposium on Theory of Computing, pp. 

350-35.5, 19X6. 

E. R. Berlekamp, Factoring polynomials over large finite 

fields, Math. Comp. 24 (1970) 713-735. 

R. E. Blahut, The Theory and Practice of Error Control 

Codes, Addison-Wesley Publishing Co., 1983. 

J. Edmonds, Systems of distinct represcntativcs and lin- 

car algebra, .I. Rcs. Nat. Bur. Stand. 713 (1967) 241-245. 

R. J. Evans and I. M. Isaacs, Gcncralizcd Vnndcrmondc 

determinants and roots of unity of prime order, Proc. of 

the AMS 5X (1976) 51-54. 

Shmuel Cal and Yuri Brcitbart, A method for obtaining 

all the solutions of a pcrfcct matching problem, Tcchni- 

cal Report No. 016, IBM Israel Scientific Center (May 

1974). 

J. von zur Gathcn, Parallel powering, Proc. of the 25th 

IEEE Symposium on Foundations of Computer Science, 

pp. 31-36, 1984. 

D. Yu. Grigoricv and M. Karpinski, ‘The matching 

problem for bipartite graphs with polynomially bounded 

pcrmancnts is in NC, Rcscarch Report No. X57-CS, 

Univ. Bonn (rh. 19X6). 

308 



U. Yu. Grigoricv and M. Knrpinski, The matching 

problem for bip;ntitc graphs with polynominlly bountlcd 

pcrmancnts is in NC, Proc. of the 28th IEEE Symposium 

on Foundations of Computer Scicncc, pp. 1% 172, 1987. 

E. Kaltofcn, Factorization of polynomials given by 

straight lint programs, manuscript, 1986. 

E. Kaltofcn and B. Trager, Sparse factorization and ra- 

tional function interpolation of polynomials given by 

black-boxes for their evaluation, manuscript, 1987. 

R. Loos, Computing rational zeros of integral 

polynomials by p-adic expansion, SlAM .I. Comp. 12 

(1983) 286-293. 

L. Lovasz, On tlctcrminants, matchings, and random al- 

gori thms, Fttrttt~rtrrc~ttttrls of Cotnptctittg T!I~ory, edited by 

L. Budach, Akadcmia-Verlng, Berlin (1979). 

J. T. Schwartz, Fast probabilistic algorithms for verifi- 

cation of polynomial identities, JACM 27 (1980) 

701-717. 

P. Tiwari, Parallel algorithms for instances of linear 

matroid parity with a small number of solutions, RC 

12766, IBM T. J. Watson Research Center, May 1987. 

P. Tiwari, Algorithms for multivariate polynomial in- 

tcrpolation. manuscript, June 1987. 

R. E. Zippcl, Probabilistic algorithms for spnrsc 

polynomials, Proc. EUROSAM ‘79, Springer Lccturc 

Notes in Computer Scicncc, vol. 72, pp. 216-226, 1979. 

R. E. Zippel, Interpolating polynomials from their val- 

ues, manuscript, 1988. 

309 


