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A B S T R A C T  

Sparse polynomial representations are used in a number of  algebraic manipulation 
systems, including Aitran. This paper discusses the arithmetic operations with sparsely 
represented polynomials; we give particular attention to multiplication and division• We 
give new algorithms for multiplying two polynomials, with n and m terms, in time 
mnlogm; these algorithms have the property that, in the usual univariate dense case, the 
algorithm is bounded by ran. Division algorithms are discussed which run in comparable 
time. 

Section O: Introduction 

A univariate polynomial of  degree d in an in- 
determinate x is usually represented as 

d 

~ a i  X i  

We shall refer to this as the dense  representation 
of  a polynomial. 

If  many of  the a i are zero, it is natural to ex- 
amine the sparse  representation 

n 

~ a i  X a i  

where we require that each a i be nonzero• n is 
called the n u m b e r  o f  terms in the sparse poly- 
nomial. Note that 0 is represented by a po- 
lynomial with 0 terms. 

In order to permit  rapid comparison of  two 
polynomials, and simplify arithmetic computa- 
tion, we usually require that the exponents ct i be  

strictly ordered; we shall assume that the a j  are 
decreasing: 

a i  > 0 ~ i +  1 , i = 1  . . . . .  n - -1  

We shall informally call a polynomial sparse if its 
dense representation has many zero coefficients, 
and dense otherwise. 

We generalize these notions to multivariate 
polynomials in the obvious way; if we have in- 
determinates x I . . . . .  x v, and a polynomial of  de- 
grees d 1 . . . . .  d v, the dense representation is 

d 1 d 

v~O i l iv . . . ail . . . . .  i vX1 • . . x  v 
i I = 0  i 

and the sparse representation is 

• . . X v 
i~ l  

As in the univariate case, we wish the ex- 
ponent v-tuples to be distinct; it is convenient to 
order the v-tuples (O~il . . . . .  Otiv) lexicographical- 
ly strictly decreasing (although other orderings are 
used - -  see [1]). 

In the multivariate case, the dense poly- 
nomial representation can take truly staggering 
amounts of  space. For example,  the ten term 
polynomial 

yo  + Y l X +  . . .  +y9 x9 

in the indeterminates x,  Yo , y  1 . . . . .  Y9, is 
represented by 10240 coefficients in the dense 
representation, most of which are zero. For this 
reason, most algebraic manipulation systems 
represent multivariate polynomials in some 
manner which capitalizes on blocks of  zero 
coefficients; the two most frequent means are re- 
cursive univariate representation and sparse 
representation. In this paper, we consider only 
the sparse representation. 

In practice, we are usually prepared to set 
upper limits I i on the largest exponent  which we 
will encounter for each indeterminate x i. In this 
case, we can map the multivariate computations 
into univariate ones as follows: each exponent  v- 
tuple 
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(Ceil . . . . .  air)  

gets mapped into 

°ti "~ (" " " (~i112 "1- c~i2 )/3 -I- • • • )i v "l-air 

If c~# < / / ,  for j =2  . . . . .  v, then the c~ i are strict- 
ly decreasing if and only if the (a i l  . . . . .  ~/ i )  are 
in strictly decreasing lexicographic order. As long 
as the exponents remain within these bounds, the 
set of  sparsely represented multivariate poly- 
nomials is mapped isomorphically into the set of 
sparsely represented univariate polynomials. 
Since univariate polynomials have notational and 
conceptual advantages, we will describe algor- 
ithms in terms of univariate sparse polynomials; 
the algorithms are easily translatable to the mul- 
tivariate case. 

Section 1: Sparse Computations 

There is little theoretical knowledge about 
sparse polynomial algorithms. In the dense case, 
fast Fourier transform, interpolation, and "divide 
and conquer" techniques can (at least asymptoti-  
cally) significantly speed up polynomial multipli- 
cation [2,3]; in contrast, the useful sparse algor- 
ithms have a decidedly "classical" flavor. 

There are no known nontrivial upper or 
lower bounds for the time taken by multiplica- 
tion, and it is not even known whether there ex- 
ists an algorithm to multiply two n term sparse 
polynomials in time O(n2). 

We shall study the four arithmetic operators 
on sparse univariate polynomials;  our basic meas- 
ure of the complexity of  the problem is the 
number of terms in the operand polynomials. 
Thus, in general we wish to compute 

n m fl  K 

Za,x op '=Zckx'k 
i ~ l  . ]~1 k ~1 

where op is one of the four arithmetic operators, 
the exponents of each polynomial are in strictly 
decreasing order, and each coefficient is nonzero. 

When we are given a sparse polynomial 
operation, the work (assuming that we stick to 
classical methods) can be divided into parts: com- 
puting the terms of the answer, and ordering 
them. The first part includes the cost of  
coefficient operations and (in the case of multipli- 
cation and division) exponent  additions and sub- 
tractions. The second part includes the cost of 
exponent  comparisons, and any other bookkeep- 
ing needed to order the terms in the answer. 

If  we compare the costs of  two methods of  
doing a polynomial operation on given inputs, we 
will see that the methods differ only in the costs 
associated with the second parts of the algor- 
ithms. All of the operations in the first part are 

demanded by the mathematical definitions, and 
must get performed in some order. Also, in gen- 
eral we can assume that the bookkeeping in- 
volved in the second part is proportional to the 
number of exponent  comparisons. Thus, we shall 
compare methods on the basis o f  the number o f  ex- 
ponent comparisons. 

This has the disadvantage that the true costs 
are not proportional to the number of  exponent  
comparisons, since the true cost also includes 
coefficient operations. In Altran [5], Version 1.8, 
we estimate that, for large polynomial  multiplica- 
tions (e.g., 100 by 100 terms), the cost of ex- 
ponent comparisons is about one half of  the total 
multiplication cost. 

To offset this disadvantage, there is the ad- 
vantage that the number of comparisons can be 
measured without reference to a particular data 
structure, machine architecture, or implementa-  
tion language. Thus, these results can hopefully 
be applied outside of the particular environment  
where they were developed. 

Section 2: Addition and Subtraction 

Throughout this section, we will discuss addi- 
tion only; the results hold for subtraction with 
the obvious sign changes. 

The simplest  way of  adding two sparse poly- 
nomials would appear to be: 

1. Concatenate the two polynomials to obtain 
one with n + m  terms. 

2. Sort the terms into decreasing order by ex- 
ponent. 

3. Make a pass through the sorted terms; 
two adjacent terms with the same ex- 
ponent are replaced by a single term, 
whose coefficient is the sum of the 
coefficients of the '  components.  If  the 
resulting coefficient is zero, the entire term 
is deleted. 

A simple analysis shows that this algorithm 
is dominated by the cost of the sort in Step 2, 
which is (n+m) log(n+m) .  Moreover,  this algor- 
i thm uses space n + m  when the answer may be 
smaller than that due to combination or cancella- 
tion of terms. An  improved algorithm is easily 
stated, provided that the input terms are sorted in 
decreasing exponent  order. The central idea is 
the following: generate the answer, term by term, in 
descending exponent order. 

At each stage of the addition, there will be 

an index i such that each term before x ~ has 

been entered into the sum, but x ~i has not yet 
entered into the sum; similarly, there will be 
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another index j for the other addend. The next 

term added to the sum will be the one of  x '~j and 

x ~i of highest exponent.  The complete algorithm 
follows: 

To compute: 

n m B K 
Z ,x + Zh x ' = Z 

given that the oti and/~ i  are in descending order, 
and the a i and hi are nonzero. 

k = O  
i = l  
j - ~ l  
whi le  ( i~<n and j~<rn ) { 

k = k +  1 
if ( a i  < flj ) { 

Ck ~hJ 
'Ylk = ~ j  
.j ~-j + l 
} 

e l s e  i f  ( a i = ~ ]  ) { 
c~ = a t + b  / 

~/k =°ti  
i f ( c  k = 0 )  k = k - - 1  
i = i + 1  
.j = j  + 1 
} 

e l s e  i f  ( ot i > ]~i ) { 

c k -~ a i 
• k =°ti  
i = i + l  
} 

I 
whi le  ( i ~  n ) { 

k - - k + l  

c k ~ a  i 
~l k "~°t i 
i = i + l  
} 

whi le  ( j ~ <  m ) { 
k = k + l  

Ck =hi  
"Yk m~j 
.j = j  + 1 
I 

K = k  

Again, a simple analysis serves to show that 
the computing time is order n + m .  In effect, the 
algorithm does a merge of  the exponent se- 
quences, combining terms with equal exponents 
and throwing out cancelled terms as it goes. A 
complete analysis of the running time in terms of  
the inputs is not very interesting; we turn instead 
to multiplication. 

Sect ion 3: Mult ip l icat ion  - -  Part  I 

Multiplication is a much harder problem. 
The naive approach would again generate all mn 
terms, sort them, and merge terms with equal 
exponents; the sort once again dominates this 
process, and we obtain a running time bounded 
by mnlog(mn). The space required, rnn, is fre- 
quently prohibitive, as well as being considerably 
larger than the answer in many cases. 

We may also consider the multiplication as a 
sum of  n polynomials 

a,x °, Zh, x ,  = Z Z ,h,x 
ij=1 j ~1  lj=i " 

The n summands are easily generated; however, 
we must be careful how we generate the sum. If 
we add the n summands one by one into the final 
sum, in the worst case (with no combination of 
terms) there may be im terms after i - 1  
summations;  the ith summation thus costs 
im+m.  We have a worst case total cost which 
could grow as 

n--I  

(i + 1 )m 
i ~ l  

which is order of  n2m operations. 

Presumably we would choose n to be smaller 
than m; nevertheless, n2rn is worse asymptotic 
behavior than mnlog(nm). 

If  we are clever about the way in °,vhich we 
add the n summands  we can improve on this 
time, however. Using the "divide and conquer" 
approach, we can sum n polynomials by recur- 

n n sively summing the first ~ and the last ~ and 

then summing. If  C ( n ) i s  the cost of  adding n 
polynomials of size m, this argument shows us 
that, in the worst case, 

or  

C(n) ~'mn + 2 C(-~-) 

Thus C ( m ) g r o w s  with order mnlogn. Note that 
this approach is simply a " tournament"  merge of  
n inputs. 

We now consider a class of  methods based 
on the idea that we should at tempt to generate 
the answer term by term in order of  decreasing 
exponents. The desired product is the sum of the 
mn terms of  the form 

aib/x~i +~i. 
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Because the tz i and the/3~ are ordered, we know 
a great deal of a priori information about the ord- 
ering of  these terms. In particular, we know that 
the term with exponent  a i + ~  i appears in the 
product strictly before the term with exponent  
czi+/3/+ 1. Thus, at each step in these algor- 
ithms, and for each i with l~,i~<n, there will be 
an integer ./~. such that terms with exponent  
oti+~.  / have been included in the answer for 
j < f / ,  and have not been included when j > / f i .  
The exponent  of  the next term to be included in 
the answer will be the largest of  the czi+/3f, ., 

where i ranges from 1 to n. I f f i  is larger than m, 
we need not consider this value of i any longer. 
The ./~ are decreasing with i; otherwise, a term 
would have been added to the answer before 
another that is clearly larger. Thus, if f /  > m 
for some index /, then ~. > m for all indices j 
with j~<i. We maintain an index I which is the 
smallest i such that f /  ~< m. 

The basic algorithm follows: 

To compute the product: 

aix  i x ! = Z Ck X'yk 
k = l  

given that the a i and 13j are in descending order, 
and all the a i and hi are nonzero. 

if ( m = 0  or n=O ) { 
K = O  
return 
} 

k = l  
C 1 = 0  
~1 =,Oq +/3 l 
for i = l  to n do f i = l  
I = 1  
while ( 1~< n ) { 

{ Find an s with I ~< s ~< n which 
maximizes a s +13.f s } 

i f (  Yk # as+13~ ) { 
i f (  Ck # 0')  { 

k = k + l  
Ck =O 
) 

"Y k = a s  + #~ 
} 

C k "~C k -t- asbfs 

f s  =fs  + 1  
i f ( f s  > m )  I = I + 1  
} 

K = k  

The step which "finds s" in the above is the 
central problem of  this method. If we do the 
linear search suggested by the wording, we re- 

quire n - I  comparisons to find s. This step is 
done nm times, once for each term in the pro- 
duct, so that the running time is order n2m. 

We may reduce the asymptotic running time 
by observing that we need not actually look at all 
the n - - l +  1 exponents  at each step, provided we 
can always find the largest of  this set. In effect, 
we have a set of  exponents  for which we wish to 
be able to 

1. F ind  and remove the largest e lement  in 
the set. 

2. Insert  a new element  into this set. (Each 
time we increment some f s ,  and fs ~< m, it 
has the effect of  putting the exponent  
0% + B y  s into the set.) 

There are a number of  data structures which 
will maintain a set of  H elements and permit  
these two operations to be done in time bounded 
by order of  logH(See [3,4]). Perhaps the simplest  
of  these structures is a heap. In this, the H ele- 
ments are kept in an array h with subscripts run- 
ning from 1 to H, so that the elements satisfy 

h i >i h2i 

and 

hi >/ h2i+ 1 

whenever the subscripts are in the range 1 to H. 
Thus, h I is always the largest of the set; the al- 
gori thms for adding an e lement  and removing the 
largest e lement  may be found in [3] or [4]. 

Applying this to multiplication, we may in- 
troduce another array s i such that the sequence 

asj +fl.t~ i , i = 1  . . . . .  n - - l + l  

is heapsorted. Then a maximal exponent  is al- 
ways given by s 1, and the per term cost of the 
process of  running the heap is at most  order of  
Iogn. The total multiplication cost is thus bound- 
ed by mnlogn. 

This method requires relatively little (2n 
words) auxiliary storage, and computes only the 
terms which finally appear in the answer. Be- 
cause the storage management  is particularly sim- 
ple and suited to a F O R T R A N  environment  (the 
auxiliary arrays can be allocated before beginning 
the multiplication), this algorithm was chosen to 
implement  polynomial  multiplication in the initial 
releases of  Altran [5]. It is quite possible that a 
system with another operating environment  and 
data representation would find the divide and 
conquer algorithm superior. 

The next section discusses some shortcom- 
ings of  this algorithm, and some proposed im- 
provements,  Section 5 gives some empirical simu- 

66 



lations, and Section 6 discusses division. 

Sect ion  4: Mul t ip l i ca t ion  - -  Part  II 

Although the above heapsort multiplication 
algorithm is asymptotically fast, it is far from per- 
fect. For example,  in the important  special case 
of  dense univariate multiplication this algorithm 
attains its worst case behavior (mnlogn), while 
even the classical dense multiplication algorithm 
is asymptotically mn. What  is more interesting is 
that the divide and conquer algorithm is also 
asymptotically mn in this case; summing k con- 
secutive polynomials with m terms yields at most 
m + k - 1  terms when the summands arise from a 
univariate dense multiplication. Thus, if C(n) is 
the cost of  adding n polynomials with m terms in 
this case, we see that 

C(n) < 2 C ( - ~ - ) + 2 ( m + ~ - - 1 )  

from which we can show that C(n) grows asymp- 
totically as mn (assuming n ~< m ). We ask if it is 
possible to make the heap algorithm work as well 
in this special case. 

As we have noted, the divide and conquer al- 
gor i thm is more efficient in the dense case be- 
cause the intermediate results have substantially 
fewer terms than in the general case. This in 
turn results from the large number of  terms with 
equal exponents generated during dense multipli- 
cations. The basic heap algorithm as given in [3] 
or [4] makes no use of equal elements,  and thus 
we obtain no improvement  in the dense case. 
Potentially, by cutting down on the size of the 
heap, the recognition of  equal exponents could 
improve the heap algorithm dramatically. 

When we run the heap process, we are con- 
tinually making exponent  comparisons, and we 
may detect equalities. We wish to remember and 
make use of these equalities without destroying 
the advantages of  the heap structure. Although 
we are continuing to study this problem, we have 
an interim solution which is well enough under- 
stood to merit inclusion as Appendix A. This 
program consists of  two interface routines, insert 
and remove, the main routine heaptfy, and a utility 
routine sethole. There are three global variables 
of  interest: hsize, the size of the heap; h, an array 
of  elements with indices 1 through hsize, which 
are the heaped elements; and hole, which is the 
location of a hole in the heap, if any. The 
routine insert inserts a new element in the heap; 
the routine remove returns the largest element in 
the heap, and heapify is called with the index of 
at most one element in h which may not be in 
heaped order; heaptfy restores the heap property 

to h. When heapify discovers that two elements 
h i and hj are equal, it may call chain( i, j ); in this 
case we assume that h/ is removed from the 
heap, and a hole is left at position j.  Presumably ,  
the element h / i s  chained to the element h i by a 
mechanism which, for simplicity, we do not 
describe. Thus, the elements of h are, in our new 
multiplication algorithm, pointers to chains of  
terms with equal exponents.  The utility routine 
sethole is used to set the global variable hole, in 
order to detect the boundary condition where the 
hole would be the last element of  the heap; in 
this case, hsize is decremented. 

There is no reason to assume that this ver- 
sion of  heapify is optimal; in particular, it does 
not always find equal exponents. As the next 
section shows, however, it appears to represent a 
substantial improvement  over the current Altran 
multiplication method. Other mechanisms such 
as 2-3 trees or A v L  trees [3,4] might lead to prac- 
tical improvements as well, and these are being 
studied. 

In addition to improvements  that can be 
made by improving the heap algorithm, we can 
make another improvement  by studying the mul- 
tiplication process more carefully. We observe 
that a term of  the form 

aibjx ai +~/ 

appears in the product after both of  the terms 

ai-1  b lxa i - I  +1~i ( if i > 1 ) 

and 

aibi_l xai+oj-I ( i f  j > 1 ) 

The algorithm given in the last section only 
uses the second of  these constraints. The first 
can be quite easily used, at the cost of a slight in- 
crease in the amount  of  logic. Whenever  we use 
a term with exponent  a i+ /3 . f  :, we must check 

whether the two successors with exponents 
o~i+ 1 +/3f~ and c~ i +/~f,,.+l are now candidates for 

the next term. The first is a new candidate when 
i +  1 ~ n and f /+  1 =fd the second is a new can- 
didate when f , . + l  ~ m and either i = l  or 
f , - t  > f , ' +  1. Thus, for each term placed into 
the answer, we may generate 0, 1, or 2 successor 
candidates. 

These tests are easily made, and are effective 
in reducing the average number of elements on 
the heap, and thus the cost. 

We have seen that, by recognizing equal ex- 
ponents and examining only candidates we can 
cut down on the number of terms which need to 
be examined in order to find the next term. In 
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common with many asymptotically fast algor- 
ithms, however, heapsort may not be best for 
small problems. Thus, we shall examine another 
algorithm, which we shall call the List-Insertion or 
LI  algorithm. In this algorithm, we keep the can- 
didate exponent sets sorted on a list; equal ex- 
ponent sets are chained so only one appears on 
the list. The largest exponent is removed from 
one end of  the list, and a new candidate is added 
at the other end and "bubbled" down to its 
correct spot. This algorithm has an a priori worst 
case behavior of  n2m, so we can expect it to be 
worse than the heap algorithm for large prob- 
lems. As we shall see, however, it is a surpris- 
ingly strong candidate for practical problems. 

Section 5: Empirical Studies 

In this section, we discuss an empirical study 
of the number of exponent comparisons required 
in the multiplication of  two n term polynomials, 
using the current Altran algorithm, the improved 
heap algorithm, and the list insertion algorithm. 

In obtaining empirical results, we wished to 
control two parameters which appeared to be 
crucial; problem size, n, and the frequency of 
equal exponents. One particularly easy way of  
controlling the number of equal exponents gen- 
erated is by limiting the number of  distinct ex- 
ponent differences oti--oti_ 1 possible in the 
problem; this number will be denoted S, and 
called the structure number. 

To generate a set of  n exponents ~i with 
structure S (for S a positive integer), we set 

c~ 1 =0  
ot i =ot i_  1 + r a n d ( S ) ,  i = 2 . . . . .  n 

Here, rand(S) is taken to be a random integer 
from 1 to S, chosen uniformly. Notice that S = I  
is the dense univariate case. We empirically in- 
vestigated the number of exponent comparisons 
required in the multiplication of  two polynomials 
with n terms and structure S. All coefl%ient 
operation costs and other bookkeeping costs are 
ignored, so the actual differences reported here 
are larger than should be expected in practice. 

Results were collected by taking the mean 
over 20 trials for each value of  n and S; the n 
values went from 10 to 90 by steps of 20, and the 
S values were 1, 4, 16, and 64. The observed 
quantities were the number of  exponent compari- 
sons divided by n 2. 

S n Altran Heap LI 

10 4.69 .99 .81 
30 7.30 1.00 .93 
50 8.60 1.00 .96 
70 9.45 1.00 .97 
90 10.14 1.00 .98 

10 4.83 2.44 1.39 
30 7.55 3.45 1.93 
50 9.02 3.68 2.19 
70 9.88 3.88 2.29 
90 10.52 4.07 2.38 

16 10 4.74 3.45 1.97 
30 7.76 5.42 3.80 
50 9.05 6.33 4.83 
70 9.91 7.02 5.47 
90 10.60 7.57 5.94 

64 10 4.88 3.94 2.20 
30 7.61 6.37 5.18 
50 9.20 7.53 7.46 
70 9.89 8.29 9.64 
90 10.68 8.94 11.33 

Notice that the current Altran algorithm is 
relatively insensitive to the structure parameter S; 
there is roughly a 5% variation in the number of  
comparisons per term as S goes from 1 to 64. 
The heap ratios are always better than the Altran 
ratios, and, as expected, the heap algorithm is 
much better when S is small, and approaches the 
Altran values as S becomes large. What is 
perhaps most surprising is the strong showing of  
the LI algorithm. It is the fastest algorithm 
whenever either n or S is small, and does its 
worst when the problems are both large and un- 
structured. The LI and heap algorithms are 
within a factor of  2 of  each other over the range 
studied, although we expect that asymptotically 
the heap algorithm will be better as n and S go to 
infinity. Because exponent comparison is only a 
part of  the total multiplication cost, in practice 
the two algorithms will differ by less than this; in 
fact, for a practical implementation, the small 
differences shown here are likely to be 
outweighed by bookkeeping costs and/or storage 
requirements. However, either the heap or LI al- 
gorithm algorithm appears to do a better job than 
the current Altran algorithm. 

Section 6: Division and Divide Test 

We suppose that we are given two (sparsely 
represented) polynomials, 
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C ~- Z C k  X~k 
k = l  

and 
m 

B =  b/x 
.]=1 

We ask about the existence of  a (sparsely 
represented) polynomial 

n 

A ~ Z a i  xai 
i = 1  

with the property that 

C = A B .  

If  there is such an A, we say B exactly divides C, 
and call the operation of  finding A from B and C, 
or deciding that none exists, the divide test opera- 
tion. If  B does not exactly divide C, then under 
certain circumstances it is meaningful to ask for 
the remainder of the division operation after we 
have removed the largest possible multiple of  B. 
This remainder operation will also be briefly dis- 
cussed. 

In order for exact division to be possible, the 
leading coefficient of B must exactly divide the 
leading coefficient of  C, and the leading exponent  
of  B must be less than or equal to the leading ex- 
ponent of  C. 

We may begin the computation by setting 

al xal _~ Cl X?____~- 
b 1 x fll 

We can then compute 

C 1 = C - a i x  al B 

B exactly divides C if and only if B exactly 
divides C l,  and C 1 has lower degree than C; thus 
we can continue this process until either bl xl31 
fails to exactly divide the leading term of some 
C i, or some Ci becomes zero. In the first case, 
exact division is impossible; in the second, exact 
division is possible, and the quotient is~iven by 

n 

A ---- Z a i  xai. 
i = 1  

This algorithm is similar in spirit and perfor- 
mance to the multiplication algorithm which sim- 
ply added n summands.  We obtain an expected 
worst case time which is order of n2m. 

Notice that the timing for division is given in 
terms of  the related multiplication. It is very 
difficult to get good timing bounds for divide test; 
in the case where exact division is impossible, it 
is hard to say at what stage this will be 
discovered, while when the division succeeds, the 

cost depends critically on the number of terms in 
the quotient, which is a priori unknown. 

There is another subtlety that should be 
mentioned. When we multiply with an algorithm 
which costs mnlogn or n2m, we are free to choose 
n to be the smaller of  m and n. When we divide, 
however, we cannot choose to divide by the quo- 
tient, because we don' t  know it. Thus, in the 
above n2m algorithm, n is the number of  terms in 
the quotient and m is the number of terms in the 
divisor; when m is small and n is large, the divi- 
sion still takes n2m, when the associated multipli- 
cation could take only nm 2. 

We can easily adapt the heap and list inser- 
tion algorithms to carry out a divide test opera- 
tion. The central idea, as with multiplication, is 
to avoid large intermediate results while still gen- 
erating the quotient terms one by one. The al- 
gorithm builds the quotient term by term, and 
carries out the multiplication of  the quotient by 
the divisor, and the subtraction of this product 
from the dividend, simultaneously and term by 
term. When there is a term in the dividend 
which is not cancelled by a term in the product, 
we generate from this term a new term in the 
quotient. Thus, at each stage in the divide test 
algorithm, we have used a certain number of  
terms from the dividend, we have computed a 
certain number of terms in the quotient, and we 
are in the process of  multiplying together the 
current quotient and the divisor. To avoid 
becoming lost in the details of  the multiplication 
algorithm, we shall assume that we have two 
routines, multerm and mulexp which take care of  
running the multiplication for us. mulexp tells us 
the exponent  of  the next term to be generated by 
the multiplication of the current quotient and the 
divisor; if there is no next term for some reason, 
this exponent  is returned as -1. mulexp does no 
work however, except' to "peek"  at the current 
state of  the multiplication and examine the ex- 
ponent, multerm actually computes the coefficient 
of this next product term, updates the f array, 
and does any other relevant bookkeeping; in 
effect, multerm resembles the body of the multi- 
plication algorithm given in section 3, above. 
The algorithm follows: 

To compute: 
K 

Z CkX "yk n 
k ~ l  ~ Z a i x O t i  

m • i~l  
Z b j x  i 
.j=l 

or report that exact division is impossible. It is 
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assumed that the Yk and the/3.i are in decreasing 
order, and that the c k and the b/are nonzero. 

if ( m = 0 ) return "division by zero" 
n----O 
k - - 1  
{ Initialize Multiplication } 
while (k~<  K )  { 

8 --- mulexp ( ) 
if ( 8  > 'Yk ) { 

e = -- multerm ( ) 
} 

else if ( 8  = ' y k  ) { 

e = c  k - - m u l t e r m ( )  
k = k + l  
} 

else if ( 8  < 'Yk ) { 
E = ' Y k  
e = c  k 

k = k + l  
} 

i f ( e ~ O )  { 
if ( e  < /31 o r b  t doesn' t  d i v i d e e )  

return "no division" 
n = n + l  
a n = e/b 1 
Ot n ~ E - - / 3 1  
} 

} 
t/ 

if ( mulexpO = --1 ) return ~ a i  xc~i 
i ~ |  

else return "no division" 

If desired, this algorithm can easily be 
modified to deliver the remainder as well as the 
quotient; instead of returning when division is 
seen to be impossible, we simply continue to gen- 
erate the terms ex ~ and add them to make up the 
remainder, while the quotient remains un- 
changed. The details are left to the reader. 

Section 7: Summary 
We have discussed arithmetic with sparse po- 

lynomials. Addition and subtraction are simple 
processes for which there are linear algorithmsb, 
Multiplication of an m term polynomial by an n 
term polynomial can be done asymptotically in 
time mnlogn, using a heapsort. Performance can 
be improved in special cases, such as the univari- 
ate dense case, by modifying the heap to recog- 
nize equal exponents.  The list insertion algor- 
ithm, although asymptotically mn 2, seems very 
competit ive in practice. Roughly speaking, we 

can do a divide test in about the same time as 
that required to do the associated multiplication. 

As far as future research is concerned, prob- 
ably the major theoretical question is whether 
there exists a sparse multiplication algorithm 
which runs in time mn. More generally, there are 
no nontrivial lower bounds on the time required 
for multiplication or division. In practice, we 
need to understand more about the interaction of 
data structures, algorithms, computer architec- 
tures, and bookkeeping. To make sensible imple- 
mentation decisions, we have to try to under- 
stand what problems we will be called upon to 
do; how big are they, how sparse are they, and 
what is their structure? Measurement  and better 
models appear to hold the key to improved 
sparse polynomial arithmetic in the 1970's. 
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Appendix A: insert, remove, and heapify 

procedure insert ( e ) { 
i f ( b o l e r O )  { 

hhote "~- e 

heapify ( hole ) 
I 

else { 
hsize = hsize+ 1 

hhsiz e "~" e 
heapify ( hsize ) 
I 

procedure remove ( ) { 
while ( hole # 0 ) { 

hhole ~- hhsiz e 
hsize ~ hsize - 1  
heapify ( hole ) 
] 

sethole ( 1 ) 
return (h  1 ) 
} 

procedure heapify ( i ) { 
hole = 0 
j = i  
while ( j  > 1 ) { 

i f ( h i  < h//2 ) break 
else if (hi ---hi~ 2 ) { 

chain ( 3 / 2 , : )  
sethole ( j ) 
return 
I 

else i f ( h /  > hi~2) { 
hi, hjn = hx2, hj 
j =j12 
} 

} 
if ( i # j )  return 
while ( 2j ~< hsize ) { 

k ---- 2j 
if ( k + l  ~< hsize)  { 

i f (hk+ l  ~> h k ) k  - - k + l  
} 

if (hi > h k )re turn 
else i f (by  = h ~ )  { 

chain (j ,  k ) 
sethole (k )  
return 
} 

e l s e i f ( h j  < hk ) { 

hi, hk -- hk, hi 
j - - k  
} 

} 

procedure sethole ( i ) { 
if ( i = hsize ) hsize = hsize--1 
else hole ~ i 
} 
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