MATH 895, Course Project, Summer 2019 Black Boxes and Zippel's Sparse Interpolation

Instructor: Michael Monagan The project is worth 40% of your final grade.

Let $f \in \mathbb{Z}[x_1, x_2, \ldots, x_n]$ be represented by a black box **B** such that given a prime p and an evaluation point $\alpha \in \mathbb{Z}_p^n$ the call $\mathbf{B}(\alpha, p)$ outputs $f(\alpha) \mod p$. The goal of this project is to design collection of operations on black boxes and implement them in Maple. All of the algorithms will be probabilistic. We will pick p sufficiently large so that they work with high probability (w.h.p.). Implement the following routines in Maple.

- 1. $\mathbf{B}(\alpha, p)$ outputs $f(\alpha) \mod p$.
- 2. degBB(B,n) outputs deg(f) the total degree of f w.h.p. degBB(B,n,i) outputs deg (f, x_i) the degree of f in x_i w.h.p. If f = 0 then output -1.
- 3. suppBB $(B, [x_1, \ldots, x_n])$ outputs the support of f i.e. the set of monomials of f w.h.p.
- 4. $\operatorname{sintBB}(B, [x_1, \ldots, x_n])$ outputs the polynomial f w.h.p., i.e. interpolates f from the black box and recovers the integer coefficients of f using Chinese remaindering.

Notes

• To implement this in Maple the black box will be represented by a Maple procedure that computes f. It might look like this

```
proc( alpha::list(integer), p::prime ) ... end.
```

A simple test example could be

```
> B := proc(alpha::list(integer), p::prime) local f;
> f := 3*x^2-5*x*y*z+11*z^3;
> Eval(f,{x=alpha[1],y=alpha[2],z=alpha[3]} mod p;
> end:
```

• To measure the efficiency of the algorithms, each of degBB, suppBB, sintBB should print out the number of calls to the black box B that it makes. To do this use a global counter like this

```
> B := proc(alpha::list(integer), p::prime)
> global CNT;
> CNT := CNT + 1;
> ...
> end:
> CNT := 0; # don't forget to initialize it
```

• For the procedure **suppBB** use Zippel's sparse interpolation method. Use the degBB procedure to determine deg (f, x_i) for $1 \le i \le n$ first. For the sparse interpolation step, pick $\beta \in \mathbb{Z}_p^n$ at random and compute

 $f(\beta_1^j, \beta_2^j, \dots, \beta_n^j) \mod p \text{ for } 1 \le j \le t$

and solve the shifted Vandermonde system.

• Zippel's sparse interpolation method first evaluates the first variable x_1 at some point β_1 then interpolates $f(\beta_1, x_2, \ldots, x_n)$ recursively. After this is done it uses the support of $f(\beta_1, x_2, \ldots, x_n)$ to obtain $f(\beta_i, x_2, \ldots, x_n)$ for $i = 2, 3, \ldots, \deg(f, x_1)$. Given a blackbox **B** that computes $f(\alpha) \mod p$, to create a black box **C** for the recursive call in one less variable, use

```
> beta1 := ...;
> C := proc(alpha::integer,p::prime)
> B([beta1,op(alpha)],p)
> end:
> ...
```

So the **C** procedure takes as input a list of n-1 values $[\alpha_1, \ldots, \alpha_{n-1}]$ for x_2, \ldots, x_n and calls **B** with n values $[\beta, \alpha_1, \ldots, \alpha_{n-1}]$.

After you have interpolated $g := f(\beta_1, x_2, \ldots, x_n) \mod p$ you will have a Maple polynomial and you will need to get the support of g, that is, the monomials in g. Use the **coeffs** command like this

```
> C := coeffs(g,indets(g),'S');
> S := [S]; # support of g
```

• Suppose

 $S = \text{Support}(f(\beta_1, x_2, \dots, x_n), \{x_2, \dots, x_n\}) \text{ and } T = \text{Support}(f, \{x_2, \dots, x_n\}).$

So T is the true support and S is the support at $x_1 = \beta_1$. For example, if $f(x, y, z) = x^2yz - 4yz + 3xy$ then $T = \{yz, y\}$ and $S = \text{Support}(f(2, x, y)) = \{y\}$.

What is the probability that S is wrong, that is, $S \neq T$? Use the Schwartz-Zippel Lemma to give a precise bound.

Design a probabilistic test to check if S = T? What is the probability your test outputs true but $S \neq T$?

- For the procedure sint **BB** you need to first determine the support of f then solve for the coefficients of f. Use additional primes and Chinese remaindering to determine the coefficients. For each additional prime q assume the support obtained using the first prime p is the support of f so that you can use a Sparse Interpolation to solve for the coefficients mod q.
- Zippel's sparse interpolation method first evaluates the first variable x_1 at some point β_1 at random from [0, p) then interpolates $f(\beta_1, x_2, \ldots, x_n)$ recursively. Then to compute $f(\beta_i, x_2, \ldots, x_n)$ for $i = 2, 3, \ldots$ we use sparse interpolation.
- We need a good application. For the application suppose we are given an $m \times m$ matrix A of polynomials in $\mathbb{Z}[x_1, ..., x_n]$ and let $f(x_1, ..., x_n) = \det A$. Program your black box **B** to compute $\det(A(\alpha_1, ..., \alpha_n) \mod p) \mod p$.

Test your code working for the following three matrices. The first is a 3 by 3 matrix in three variables a, b, c. The second is a 6 by 6 matrix in 7 variables a, b, c, d, e, f, z. The third one forces you to use Chinese remaindering. The matrix is the same as the second but I've set a = 11 so the variables are b, c, d, e, f, z. Use 31 bit primes.

> with(LinearAlgebra):

> A := Toeplitz([a,b,d],symmetric);

	a	b	c
A :=	b	a	b
	c	b	a

```
> A := Matrix(6,6,
```

What to hand in?

To present your work please write a report in LaTeX. The report should be 10 to 12 pages (12pt font, 1 inch margins) plus any appendices that you wish to include. You should explain selected details of the algorithms and present any data and/or examples that you wish to show. Submit also a printout of a Maple worksheet showing your Maple code and demonstrating that the code works correctly.

Assessment

Code demo (10 marks) Monday July 29th Final report (15 marks) and final code (15 marks) due 5pm August 16th.