# MATH 895, Course Project, Summer 2019 Black Boxes and Zippel's Sparse Interpolation 

Instructor: Michael Monagan<br>The project is worth $40 \%$ of your final grade.

Let $f \in \mathbb{Z}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ be represented by a black box $\mathbf{B}$ such that given a prime $p$ and an evaluation point $\alpha \in \mathbb{Z}_{p}^{n}$ the call $\mathbf{B}(\alpha, p)$ outputs $f(\alpha) \bmod p$. The goal of this project is to design collection of operations on black boxes and implement them in Maple. All of the algorithms will be probabilistic. We will pick $p$ sufficiently large so that they work with high probability (w.h.p.). Implement the following routines in Maple.

1. $\mathbf{B}(\alpha, p)$ outputs $f(\alpha) \bmod p$.
2. $\operatorname{deg} \mathbf{B B}(B, n)$ outputs $\operatorname{deg}(f)$ the total degree of $f$ w.h.p. $\operatorname{deg} \mathbf{B B}(B, n, i)$ outputs $\operatorname{deg}\left(f, x_{i}\right)$ the degree of $f$ in $x_{i}$ w.h.p. If $f=0$ then output -1 .
3. $\operatorname{suppBB}\left(B,\left[x_{1}, \ldots, x_{n}\right]\right)$ outputs the support of $f$ i.e. the set of monomials of $f$ w.h.p.
4. $\operatorname{sintBB}\left(B,\left[x_{1}, \ldots, x_{n}\right]\right)$ outputs the polynomial $f$ w.h.p., i.e. interpolates $f$ from the black box and recovers the integer coefficients of $f$ using Chinese remaindering.

## Notes

- To implement this in Maple the black box will be represented by a Maple procedure that computes $f$. It might look like this

```
proc( alpha::list(integer), p::prime ) ... end.
```

A simple test example could be

```
> B := proc(alpha::list(integer), p::prime) local f;
> f := 3*x^2-5*x*y*z+11*z^3;
> Eval(f,{x=alpha[1],y=alpha[2],z=alpha[3]} mod p;
> end:
```

- To measure the efficiency of the algorithms, each of degBB, suppBB, sintBB should print out the number of calls to the black box $\mathbf{B}$ that it makes. To do this use a global counter like this

```
> B := proc(alpha::list(integer), p::prime)
> global CNT;
> CNT := CNT + 1;
> ...
> end:
> CNT := 0; # don't forget to initialize it
```

- For the procedure suppBB use Zippel's sparse interpolation method. Use the degBB procedure to determine $\operatorname{deg}\left(f, x_{i}\right)$ for $1 \leq i \leq n$ first. For the sparse interpolation step, pick $\beta \in \mathbb{Z}_{p}^{n}$ at random and compute

$$
f\left(\beta_{1}^{j}, \beta_{2}^{j}, \ldots, \beta_{n}^{j}\right) \bmod p \text { for } 1 \leq j \leq t
$$

and solve the shifted Vandermonde system.

- Zippel's sparse interpolation method first evaluates the first variable $x_{1}$ at some point $\beta_{1}$ then interpolates $f\left(\beta_{1}, x_{2}, \ldots, x_{n}\right)$ recursively. After this is done it uses the support of $f\left(\beta_{1}, x_{2}, \ldots, x_{n}\right)$ to obtain $f\left(\beta_{i}, x_{2}, \ldots, x_{n}\right)$ for $i=2,3, \ldots, \operatorname{deg}\left(f, x_{1}\right)$. Given a blackbox $\mathbf{B}$ that computes $f(\alpha) \bmod p$, to create a black box $\mathbf{C}$ for the recursive call in one less variable, use

```
> beta1 := ...;
> C := proc(alpha::integer,p::prime)
> B([beta1,op(alpha)],p)
> end:
> ...
```

So the $\mathbf{C}$ procedure takes as input a list of $n-1$ values $\left[\alpha_{1}, \ldots, \alpha_{n-1}\right]$ for $x_{2}, \ldots, x_{n}$ and calls $\mathbf{B}$ with $n$ values $\left[\beta, \alpha_{1}, \ldots, \alpha_{n-1}\right]$.
After you have interpolated $g:=f\left(\beta_{1}, x_{2}, \ldots, x_{n}\right) \bmod p$ you will have a Maple polynomial and you will need to get the support of $g$, that is, the monomials in $g$. Use the coeffs command like this

```
> C := coeffs(g,indets(g),'S');
> S := [S]; # support of g
```

- Suppose

$$
S=\operatorname{Support}\left(f\left(\beta_{1}, x_{2}, \ldots, x_{n}\right),\left\{x_{2}, \ldots, x_{n}\right\}\right) \text { and } T=\operatorname{Support}\left(f,\left\{x_{2}, \ldots, x_{n}\right\}\right)
$$

So $T$ is the true support and $S$ is the support at $x_{1}=\beta_{1}$. For example, if $f(x, y, z)=$ $x^{2} y z-4 y z+3 x y$ then $T=\{y z, y\}$ and $S=\operatorname{Support}(f(2, x, y))=\{y\}$.

What is the probability that $S$ is wrong, that is, $S \neq T$ ?
Use the Schwartz-Zippel Lemma to give a precise bound.
Design a probabilistic test to check if $S=T$ ?
What is the probability your test outputs true but $S \neq T$ ?

- For the procedure sintBB you need to first determine the support of $f$ then solve for the coefficients of $f$. Use additional primes and Chinese remaindering to determine the coefficients. For each additional prime $q$ assume the support obtained using the first prime $p$ is the support of $f$ so that you can use a Sparse Interpolation to solve for the coefficients mod $q$.
- Zippel's sparse interpolation method first evaluates the first variable $x_{1}$ at some point $\beta_{1}$ at random from $[0, p)$ then interpolates $f\left(\beta_{1}, x_{2}, \ldots, x_{n}\right)$ recursively. Then to compute $f\left(\beta_{i}, x_{2}, \ldots, x_{n}\right)$ for $i=2,3, \ldots$ we use sparse interpolation.
- We need a good application. For the application suppose we are given an $m \times m$ matrix $A$ of polynomials in $\mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$ and let $f\left(x_{1}, \ldots, x_{n}\right)=\operatorname{det} A$. Program your black box $\mathbf{B}$ to compute $\operatorname{det}\left(A\left(\alpha_{1}, \ldots, \alpha_{n}\right) \bmod p\right) \bmod p$.
Test your code working for the following three matrices. The first is a 3 by matrix in three variables $a, b, c$. The second is a 6 by 6 matrix in 7 variables $a, b, c, d, e, f, z$. The third one forces you to use Chinese remaindering. The matrix is the same as the second but I've set $a=11$ so the variables are $b, c, d, e, f, z$. Use 31 bit primes.

```
> with(LinearAlgebra):
> A := Toeplitz([a,b,d],symmetric);
\[
A:=\left[\begin{array}{lll}
a & b & c \\
b & a & b \\
c & b & a
\end{array}\right]
\]
> A := Matrix(6,6,
    [[8*a^3, 4*a^4-4*a^2*d^2+4*a^2*f^2, 0, 0, -4*a^4+4*a^2* * ^ 2-4*a^2*c^2, 0],
    [0, 8*a^3, 4*a^4-4*a^2*b^2+4*a^2*c^2, -8*a^3*c^2, 0, 0],
    [0, 0, 8*a^3, -4*a^4+4*a^2*b^2-4*a^2*c^2, 0, 0],
    [-4*a^4+4*a^2*d^2-4*a^2*f^2, -8*a^3*f^2, 0, 0,
        4*a^3*c^2-4*a^3*e^2+4*a^3*f^2, 48*a^2*z],
    [0, 0, -4*a^4+4*a^2*d^2-4*a^2*f^2, 4*a^3*c^2-4*a^3*e^2+4*a^3*f^2, -8*a^3, 0],
    [0, 0, 0, 48*a^2*z, 0, -8*a^3]]);
```

```
> a := 11; # same matrix as above
> A := Matrix(6,6,
    [[8*a^3, 4*a^4-4*a^2*d^2+4*a^2*f^2, 0, 0, -4*a^4+4*a^2* * ^ 2 - 4*a^2*c^2, 0],
        [0, 8*a^3, 4*a^4-4*a^2*b^2+4*a^2*c^2, -8*a^3*c^2, 0, 0],
        [0, 0, 8*a^3, -4*a^4+4*a^2*b^2-4*a^2*c^2, 0, 0],
        [-4*a^4+4*a^2*d^2-4*a^2*f^2, -8*a^3*f^2, 0, 0,
                4*a^3*c^2-4*a^3*e^2+4*a^3*f^2, 48*a^2*z],
        [0, 0, -4*a^4+4*a^2*d^2-4*a^2*f^2, 4*a^3*c^2-4*a^3*e^2+4*a^3*f^2, -8*a^3, 0],
        [0, 0, 0, 48*a^2*z, 0, -8*a^3]]);
```


## What to hand in?

To present your work please write a report in LaTeX. The report should be 10 to 12 pages (12pt font, 1 inch margins) plus any appendices that you wish to include. You should explain selected details of the algorithms and present any data and/or examples that you wish to show. Submit also a printout of a Maple worksheet showing your Maple code and demonstrating that the code works correctly.

## Assessment

Code demo (10 marks) Monday July 29th
Final report ( 15 marks) and final code ( 15 marks) due 5pm August 16th.

