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ABSTRACT
Coulomb Sturmian amplitude functions are derived in prolate spheroidal coordinates and are pre-
sented in a closed algebraic form. Spheroidal Sturnian functions are revealed to be related to the
polynomial solutions of Heun’s confluent equation. A reduction of symmetry from spherical to axial
leads to the coupling of spherical polar orbitals and the formation of hybrid orbitals. The contribu-
tion of each spherical orbital into a hybrid orbital depends strongly on distance R from a nucleus to
the dummy centre, and substantially alters when R varies. At two limiting cases R = 0 and R → ∞
spheroidal Sturmians are purely atomic orbitals, whereas at intermediate R they contain many fea-
tures intrinsic to diatomicmolecular orbitals. Applications of spheroidal Sturmian basis are discussed;
Coulomb spheroidal Sturmians are asserted to be the most appropriate basis functions for diatomic
molecular calculations.

1. Introduction

At an early stage of the development of wave mechanics,
hydrogen-like amplitude or wave functions were consid-
ered to be satisfactory basis functions to build orbitals
of many-electron atoms; it was soon revealed, however,
that, unless the continuum is included, the hydrogen-
like functions form an incomplete set, and thus fail to
yield the proper atomic orbitals. To rectify this deficiency,
Shull and Löwdin [1] proposed to construct basis func-
tions in such a way as to be complete: i.e. any func-
tion obeying the appropriate boundary conditions was
expandable in terms of the introduced basis functions.
Basis sets of this type have been called a Sturmian basis
[2,3] to emphasise their connectionwith Sturm–Liouville
theory. Coulomb Sturmian amplitude functions obtained
in spherical polar coordinates have found many applica-
tions in atomic physics. The completeness of Coulomb

CONTACT Tamaz Kereselidze tamaz.kereselidze@tsu.ge

Sturmians combined with their satisfactory properties
of convergence makes them suitable to construct ampli-
tude functions of many-electron atoms. The methods
developed to calculate the spectra and properties of
few-electron atoms and atomic ions, together with the
obtained results, are presented elsewhere [4].

The efficient application of Coulomb Sturmians in
atomic physics makes possible the use of this method
in molecular calculations. For systems of one electron
and many centres, calculations with Coulomb Sturmi-
ans are reported in several papers [5–11]. Coulomb
Sturmians have been used to treat problems involving
many centres and many electrons [12,13]; pilot calcu-
lations were performed for N-electron molecules using
the generalised Sturmian method. Generalised Sturmian
basis functions, their connection to hyperspherical har-
monics and their application to solve many-electron
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Figure . Prolate spheroidal coordinate system defined by Equa-
tions (); an ellipsoidal surface (red) corresponds to constant ξ =
3/2; two hyperboloids (blue surfaces) correspond to constant η =
±3/4; a half-plane (green) is a surface of constant ϕ = π/4.

problems directly, without the use of the self-consistent-
field approximation, are explored elsewhere [14].

Other than spherical polar coordinates, the non-
relativistic Schrödinger equation for the Kepler–
Coulomb problem is separable in paraboloidal and
prolate spheroidal (or ellipsoidal) coordinates [15,16].
The possibility to solve the obtained one-dimensional
equations exactly and to express the amplitude functions
in a closed form in paraboloidal coordinates allows
one to generate the appropriate Sturmian sets, suitable
as a complete orthonormal expansion basis in atomic
and molecular calculations. Coulomb Sturmians in
paraboloidal coordinates have been derived and inves-
tigated in detail [17,18]. In comparison with numerous
applications of Coulomb spherical and paraboloidal
amplitude functions, the spheroidal solutions have
received little attention. This situation is attributed to the
fact that solutions of the appropriate one-dimensional
equations were not recognised to be expressed in terms
of known special functions [19–21], although these equa-
tions are now understood to be solvable directly in terms
of Heun’s confluent functions, as we explain in Section 3.

The system of prolate spheroidal coordinates has two
centres, corresponding to the foci of the respective ellip-
soid, cf. Figure 1, and is most suitable for a study of the
hydrogen molecular ion H+

2 . In the case of the hydrogen
atom, one centre is at the atomic nucleus and another
is located at distance R from the nucleus along positive
axis z. The Schrödinger equation is reduced to three cou-
pled equations, two of which contain R as a parameter;
these equations become the familiar radial and angular
equations when R tends to zero; the solutions of these
equations are hence sometimes called the quasiradial
and quasiangular functions. The third equation that
does not contain R is common to spherical polar and
paraboloidal coordinates. For arbitrary R, the quasiradial

and quasiangular functions depend upon the distance
between the centres of spheroidal coordinates, of which
one has charge Z, and another, a dummy centre, has Z =
0. When R → ∞, the Coulomb spheroidal amplitude
functions transform into the Coulomb paraboloidal
amplitude functions [19].

Recent attention to the solution of the hydrogen atom
problem in spheroidal coordinates [22–28] revived inter-
est in solutions of this type, which have in turn stimulated
interest in the Coulomb Sturmians basis set, obtained
in spheroidal coordinates. In [17,18], the Coulomb Stur-
mian amplitude functions are derived in two limiting
cases, at small and large R. The results were obtained
on representing the unknown functions in terms of
Coulomb spherical (small R) and Coulomb paraboloidal
(at large R) Sturmians. The main spheroidal corrections
to spherical and paraboloidal Coulomb Sturmian ampli-
tude functions are found in [17,18]. Our paper [29] sug-
gests a simple and straightforward scheme of calcula-
tion; Coulomb spheroidal Sturmians for some states are
obtained in an explicit algebraic form at arbitrary sepa-
ration R. An important conclusion is that Coulomb Stur-
mian amplitude functions derived in spheroidal coordi-
nates constitute the most appropriate basis functions for
calculations on diatomic molecules. Knowledge of the
complete set of Coulomb spheroidal Sturmians is hence
desirable.

The purpose of the present work is twofold. The first
objective is to develop optimally a method of calculation
[29]; explicitly, we seek the spheroidal Sturmians in an
entirely closed form for use in calculations on diatomic
molecules involving several electrons. The second objec-
tive is to express spheroidal Sturmians through known
special functions, specifically, in terms of Heun’s con-
fluent functions and to reveal the properties of derived
functions.

This article is organised as follows. After this review
of the main results of preceding authors and stating the
purpose of the present work, Section 2 presents briefly
the basic equations and explicit expressions for Coulomb
Sturmian amplitude functions in spheroidal coordinates.
Section 3 reveals the relation of Coulomb spheroidal
Sturmians to Heun’s confluent functions. Sections 4 and
5 present illustrations of the derived amplitude func-
tions and discuss their application, before a conclusion in
Section 6. Atomic units, in which e = m = h = 1 are
used throughout this article.

2. Coulomb Sturmian functions in spheroidal
coordinates

The main characteristics of the Coulomb Sturmian basis
become evident by reference to the hyrogenic basis. By
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definition, the Coulomb Sturmian amplitude functions
�(�r) satisfy the equation [12,13]

(
−1
2
� − Z

r
− E

)
�(�r) = 0, (1)

in which E = −k2/2 < 0 is a fixed parameter, Z =
nk and n = 1, 2, . . .. The solutions of Equation (1) are
�nlm(�r) = Rnl (r)Ylm(ϑ, ϕ), in which appear radial func-
tion Rnl (r) and spherical harmonicYlm(ϑ, ϕ). The radial
functions of states with n ≤ 3 and l ≤ 1 are given in [13].

We seek the solutions of Equation (1) in prolate
spheroidal coordinates,

ξ = ra + rb
R

η = ra − rb
R

ϕ = arctan
y
x
. (2)

In (2) ra and rb denote the distances from an elec-
tron to the left and right centres of spheroidal coordinate
system and x, y are Cartesian coordinates; the variables
are defined in these domains: 1 ≤ ξ < ∞, −1 ≤ η ≤ 1
and 0 ≤ ϕ ≤ 2π ; a nucleus is located at the left centre of
spheroidal coordinates (ξ = 1, η = −1). Figure 1 shows
surfaces of constant values of these coordinates.

On presenting theCoulomb Sturmian amplitude func-
tion ψ(ξ, η, ϕ) as a product of three functions

ψ(ξ, η, ϕ) = X (ξ )Y (η)e±imϕ, (3)

in whichm = 0, 1, 2, . . . is the magnetic quantum num-
ber, Equation (1) becomes expressed in this form

d
dξ

(
ξ 2 − 1

) dX
dξ

+
[
λ − k2R2

4
(
ξ 2 − 1

) + nkRξ − m2

ξ 2 − 1

]
X = 0,

(4.a)

d
dη

(
1 − η2) dY

dη

+
[
−λ − k2R2

4
(
1 − η2) − nkRη − m2

1 − η2

]
Y = 0.

(4.b)

Hereλ is a separation parameter, energyE = −Z2/2n2
is the same for all solutions and charge Z is chosen to
make the solutions isoenergetic.We considerm to be pos-
itive without loss of generality, so as to avoid writing |m|
in the formulae. In (4.a) and (4.b) the eigenvalues are the
separation parameters λ associated with each amplitude

function. In this case, in contrast with the cases for spher-
ical and paraboloidal basis sets, neither spheroidal eigen-
functions ψ(ξ, η, ϕ) nor eigenvalues λ are expressible in
closed form [17,18].

It follows from (4) that the functions X (ξ ) ≡ W (t )
andY (η) ≡ W (t ) satisfy the same equation with distinct
domains for the variables:

d
dt

(
1 − t2

) dW
dt

−
[
λ + k2R2

4
(
1 − t2

) + nkRt + m2

1 − t2

]
W = 0.

(5)

RepresentingW (t ) as

W (t ) = e−
kR(t−1)

2
(
t2 − 1

)m
2 �(t ), (t = ξ ) (6.a)

W (t ) = e−
kR
2 (1+t )(1 − t2

)m
2 �(t ), (t = η) (6.b)

and substituting (6.a) and (6.b) into (5), we obtain the
equation for unknown function �(t ):

(
1 − t2

) d2�
dt2

− [
2 (m + 1) t + kR(1 − t2)

] d�

dt
− [

λ + m2 + m + kR(n − m − 1)t
]
� = 0. (7)

The solutions of the hydrogen atom in spheroidal
coordinates, i.e. the familiar Coulomb spheroidal ampli-
tude functions, are polynomials [19,28]. It is hence natu-
ral to suppose that the solutions of Equations (4.a) and
(4.b) are also polynomials at all separations. In accor-
dance with this assumption, we represent the solution of
Equation (7) as

�(t ) =
s∑

i=0
ds−i (R) ts−i, (ds = 1) (8)

in which s defines the degree of the polynomial and ds−i
are polynomial coefficients that depend on R.

Substituting (8) into (7) and introducing the new
separation parameter h = λ + (m + s)(m + s + 1) one
obtains that polynomial coefficients ds−i must satisfy the
equation:

s∑
i=o

{
kR [s − i − n + m + 1] ts−i+1

− [h + i (i − 2s − 2m − 1)] ts−i

−kR (s − i) ts−i−1 + (s − i) (s − i − 1) ts−i−2} ds−i = 0.
(9)

Setting equal to zero the coefficients before each power
of t , we evaluate polynomial coefficients ds−i. For givenm
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and s = 0, 1, . . ., we obtain that n = s + m + 1 and

ds = 1,

ds−1 = − 1
kR

hds,

ds−2 = − 1
2kR

{[
h − 2(m + s)

]
ds−1 + skRds

}
,

ds−3 = − 1
3kR

{[
h − 4(m + s) + 2

]
ds−2

+ (s − 1)kRds−1 − s(s − 1)ds
}
,

ds−4 = − 1
4kR

{[
h − 6(m + s) + 6

]
ds−3

+ (s − 2)kRds−2 − (s − 1)(s − 2)ds−1
}
,

ds−5 = − 1
5kR

{[
h − 8(m + s) + 12

]
ds−4

+ (s − 3)kRds−3 − (s − 2)(s − 3)ds−2
}
,

ds−6 = − 1
6kR

{[
h − 10(m + s) + 20

]
ds−5

+ (s − 4)kRds−4 − (s − 3)(s − 4)ds−3
}
. (10)

Further polynomial coefficients are readily evaluated.
Setting equal to zero the coefficients before t0 in (9),

one obtains that the separation parameter h is a solution
of the following algebraic equations:

h = 0 s = 0 (11.a)

[h − 2(m + 1)] d0 + kRd1 = 0 s = 1 (11.b)

[h − s(2m + s + 1)] d0 + kRd1 − 2d2 = 0 s = 2, 3, ...
(11.c)

Substituting in each of these equations the above
derived explicit expressions for d0, d1, d2 corresponding
to givenm and s, we produce an equation of order (n − m)
that has (n − m) real and distinct roots h1 < h2 < h3 <

· · · hn−m (cf. Appendix A).
It remains to specify amplitude functions ψ(ξ, η, ϕ)

with spheroidal quantum numbers (nξ , nη,m), in which
nξ and nη denote the number of nodes of the quasira-
dialXnξm(ξ ) and quasiangularYnηm(η) functions, respec-
tively. Substituting in turn the roots h1, h2, . . . hn−m into
Xnξm(ξ ) andYnηm(η), we obtain that, when h = h1 nξ = 0
and nη = n − m − 1, when h = h2 nξ = 1 and nη = n −
m − 2, when h = h3 nξ = 2 and nη = n − m − 3 and
so on [29]. The spheroidal quantum numbers are hence
related with a condition n = nξ + nη + m + 1. When
R → ∞, n = nξ + nη + m + 1 transforms into the con-
dition n = n1 + n2 + m + 1 in which (n1,n2,m) are the
paraboloidal quantum numbers.

To summarise these results, we state that, for given
m and s (s ≡ n − m − 1 = 0, 1, . . .), the Coulomb Stur-
mian amplitude functions obtained in spheroidal coordi-
nates are expressible as

ψnξnηm = Cnξnηme
− kR(ξ+η)

2
[
(ξ 2 − 1)(1 − η2)

]m
2

×
s∑

i=0
ds−iξ

s−i
s∑

j=0
ds− jη

s− je±imϕ, (12)

in which

ds = 1,

ds−i = − 1
ikR

{[
hl + (i − 1)(i − 2 − 2m − 2s)

]
ds−i+1

+ (s − i + 2)kRds−i+2 − (s − i + 2)
× (s − i + 3)ds−i+3

}
, (i = 1, 2, . . . s) (13)

hl is root l (1 ≤ l ≤ s + 1) of Equation (11) correspond-
ing to the spheroidal quantum numbers nξ = l − 1,
nη = s − l + 1 and m; Cnξnηm is a normalising factor (cf.
Appendix B).

Amplitude functions (12) with varied m are orthog-
onal because of factor exp(±imϕ). The quasiradial
Xnξm(ξ ) and quasiangular Ynηm(η) functions are defined
with Equation (5), in which separation parameter λ plays
the role of an eigenvalue. For given n and m, all solu-
tions of Equation (5) are hencemutually orthogonal, pro-
vided only that λ are distinct; in Appendix A, we show
that λ are all real and distinct. Hence 〈Xn′

ξm|Xnξm〉 = 0
and 〈Yn′

ηm|Ynηm〉 = 0 if nξ + nη = n′
ξ + n′

η and n′
ξ 	= nξ ,

n′
η 	= nη.
The spheroidal Sturmians ψnξnηm =

Xnξm(ξ )Ynηm(η)e±imϕ derived above correspond to
the location of a nucleus at the left centre of spheroidal
coordinates (ξ = 1,η = −1). If a nucleus is located at
the right centre (ξ = 1,η = 1), the quasiradial function
Xnξm(ξ ) remains unchanged whereas η → −η in the
quasiangular functionYnηm(η).

3. Relation with Heun’s confluent functions

In this section we demonstrate that the solutions of one-
dimensional equation (7) and accordingly Equation (5)
are related to the solutions of Heun’s confluent equation.
In its standard canonical normal form the Heun’s equa-
tion is expressed as [30–32]{

x(x − 1)(x − μ)
d2

dx2
+ [

c(x − 1)(x − μ) + dx(x − μ)

+ (a + b+ 1 − c − d)x(x − 1)
] d
dx

+ (abx − α)

}
χ (x) = 0. (14)
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This equation has three regular singularities x = 0,
x = 1, x = μ and one irregular singularity x = ∞; a, b, c,
d are local parameters,μ is a scaling parameter that deter-
mines the location of one singular point; α is an accessory
parameter that typically plays a role of spectral parameter.

Heun’s (singly) confluent equation is obtained from
the general Heun equation (14) through a confluence, i.e.
a process according to which two singularities coalesce,
performed by redefining parameters and taking limits.
Coalescing singular points x = μ and x = ∞ (μ = 1/ε,
b = p/ε, α = β/ε, ε → 0, p = μ, β = α), we obtain
[31,32]

{
x(x − 1)

d2

dx2
+ [c(x − 1) + dx − μx(x − 1)]

d
dx

− (aμx − α)
}
χ(x) = 0. (15)

Performing Möbius transformation x → t where t =
2x − 1 [31,32], Heun’s confluent equation (15) becomes
written in this form:

{
(1 − t2)

d2

dt2
−

[
(c + d) t − c + d + μ

2
(
1 − t2

)] d
dt

−
[
α − μa

2
(1 + t )

] }
χ(t ) = 0. (16)

Assuming that

a = −n + m + 1,
c = d = m + 1,
μ = 2kR,

α = λ + m2 + m − kR(n − m − 1),

(17)

Equation (16) converts into Equation (7). The solu-
tions of confluent Heun’s equation (15) with parameters
defined in Equation (17) are hence expected to coincide
with the solutions of Equation (7).

For any singular points x = 0, x = 1 and x = ∞, two
solutions of Equation (15) exist, which are characterised
by the particular behaviour at these singular points [32].
Near singular point x = 0 the regular solution is repre-
sented as an expansion in power series

χ(a, c, d; x) =
∞∑
i=0

gixi, g0 = 1. (18)

For this to be a solution of (15) the expansion coef-
ficients must satisfy the three-term recurrence relation
[32]

(i + 1)(i + c)gi+1 − [i (i + c + d + μ − 1) + α] gi
+ μ (i + a − 1) gi−1 = 0. (19)

When parameters a, c, d,μ and accessory parameter α

are defined with Equations (17), (19) transforms into the
following three-term recurrence relation:

(i + 1)(i + m + 1)gi+1 − [i(i + 2m + 1 + 2kR)

− kR(n − m − 1) + λ + m2 + m]gi
+ 2kR(i − n + m)gi−1 = 0. (20)

Recurrence relation (20) yields a continued-fraction
equation in λ, the roots of which determine the expan-
sion coefficients in (18). For the non-polynomial solu-
tions of Equation (15), the algorithm of the calculation
is discussed elsewhere [31,32].

We seek the solutions of Heun’s confluent equation
(15) in a polynomial form. When i = 0, (18) is a poly-
nomial of degree zero, χ(a, c, d; x) = 1. In this case (20)
converts into the equation kR(n − m − 1) − λ − m2 −
m = 0. To satisfy this equation for arbitrary R, condi-
tions n = m + 1 and λ = m2 + m must be fulfilled. The
obtained solution of Equation (15) hence coincides with
the solution of Equation (7) derived in Section 2 at s = 0.

When i = 0, 1, (18) converts into a polynomial of first
degree, χ(a, c, d; x) = 1 + g1x. Recurrence relation (20)
yields two equations for g1. To satisfy these equations
simultaneously λ must be the solution of the quadratic
equation with n = m + 2. A small calculation shows that
the obtained equation coincides with the quadratic equa-
tion derived in Section 2 at s = 1; the solutions of
Equation (15) coincide with those of Equation (7).

When i = 0, 1, 2, (18) converts into a polynomial
of second degree, χ(a, c, d; x) = 1 + g1x + g2x2. Recur-
rence relation (20) yields three equations for g1 and g2.
To satisfy these equations simultaneously λ must be the
solution of the cubic equationwith n = m + 3. This cubic
equation coincides with the analogous one derived in
Section 2 at s = 2; the solutions of Equation (15) coincide
with the solutions of Equation (7). The same effect can be
shown for polynomials of third, fourth,. . . degrees. We
have thus derived that the solutions of Equation (7) coin-
cide with the polynomial solutions of Heun’s confluent
equation (15), �(t ) = χ(a, c, d; (t + 1)/2), if parame-
ters a, c, d, μ and accessory parameter α are defined with
Equation (17).

4. Properties of spheroidal Sturmian functions

Spheroidal Sturmian amplitude functions
ψnξnηm(ξ , η, ϕ), derived above, can be represented
as linear combinations of Coulomb spherical Sturmians
�nlm(ra, ϑa, ϕ). This result is achievable on representing
rb in Equations (2) as rb = (r2a − 2raR cosϑa + R2)1/2,
in which ϑa denotes the angle between radius vector �ra
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and axis z, and on representing spheroidal coordinates
through spherical ones (ra, ϑa, ϕ) in ψnξnηm(ξ , η, ϕ).
Performing the appropriate calculation, we obtain that,
at all separations, ψnξnηm(ξ , η, ϕ) is a linear combination
of spherical Sturmians �nlm(ra, ϑa, ϕ) orbitals with
n = m + 1, m + 2, … nξ + nη + m + 1 and l = m,
m + 1, … nξ + nη + m (cf. Appendix C).

We thus obtain that, with the exception of functions
ψ00m, the introduced spheroidal Sturmians ψnξnηm are
hybrid orbitals; such a hybrid orbital is more stretched
towards a neighbour atom and yields greater overlap
of orbitals, and accordingly a stronger bond of atoms
involved in a molecule. From equations (C.1)–(C.3)
it follows that, when R → 0 spheroidal orbital ψnξnηm
converts into spherical �nlm with n = nξ + nη + m + 1
and l = nη + m; at limit R → ∞, ψnξnηm converts into
paraboloidal orbital �n1n2m with quantum numbers n1 =
nξ and n2 = nη, as appropriate.

An important property, which follows also from equa-
tions presented in Appendix C, is that the shape of
spheroidal Sturmian orbitals depends on distance R from
a nucleus to a dummy centre and significantly alters
when R varies. As graphic illustrations of the progression
of spheroidal amplitude functions ψnξnηm as distance R
increases along axis z from the spherical polar limit at
R = 0 to the paraboloidal limit as R → ∞, we display
plots of surfaces of constant ψnξnηm functions at a mag-
nitude that is 1/20 of the maximummagnitude. Whereas
these amplitude functions are expressed in terms of pro-
late spheroidal coordinates, the figures are plotted in the
customary Cartesian coordinates. At any value of R, the
surface for function ψ000 is a sphere (is not shown); for
ψ010 andψ100, the shapes vary with R as shown in Figures
2(a)–(d) and 3(a)–(d).

Figure 2(a) shows that, at R = 0, the shape of
spheroidal orbitalψ010 coincides with the shape of spheri-
cal polar orbital�2p0.WhenR increases, this shape alters:
as follows from Figure 2(b), the two lobes of spheroidal
orbital ψ010 lack a clear gap implying a planar nodal sur-
face between them; the negative lobe along axis z is per-
ceptibly smaller than the positive lobe along axis z. The
same tendency is observable in Figure 2(c), in which
the negative lobe is much smaller than the positive lobe.
WhenR = 50 ( Figure 2(d)), the negative lobe disappears;
the shape of positive lobe resembles strongly the shape of
a paraboloidal amplitude function with quantum num-
bers n1 = 0, n2 = 1 andm = 0.

For ψ100 at R = 0, in Figure 3(a) the inner (positive)
lobe has a spherical shape with its centre on a nucleus;
the negative lobe also has a spherical shape and occupies
the volume between the inner and another (negative) lobe
of spherical shape of much larger size. This negative lobe
is cut open to depict the inner structure of the positive

lobe. The shape of this contour of the amplitude func-
tionψ100 thus coincides at R = 0 with the shape of spher-
ical polar amplitude function�2s0.When R increases, the
inner and outer lobes of amplitude function ψ100 sub-
stantially alter, as shown in Figure 3(b)–(d). At R = 1,
in Figure 3(b) the inner (positive) lobe of spheroidal
orbital ψ100 has its centre clearly displaced along posi-
tive axis z approximately 1 unit from the origin at which
the nucleus is located; its shape is no longer spherical but
prolate spheroidal. At R = 2 in Figure 3(c), the positive
lobe of spheroidal orbital ψ100 has entirely escaped from
enclosure within the negative lobe. When R = 50 in Fig-
ure 3(d), the negative lobe disappears; the shape of the
remaining positive lobe resembles strongly the shape of a
paraboloidal amplitude function with the quantum num-
bers n1 = 1, n2 = 0 andm = 0. According to Figure 2(d)
and 3(d), at R = 50 the shapes of spheroidal orbitals ψ010
an ψ100 are practically identical, but oriented oppositely
along axis z. We refrain from presenting amplitude func-
tion ψ001 because it has no dependence on R and at
any separation coincides with spherical polar amplitude
function �2p1.

These algebraic and graphical results thus reveal that,
for R > 0, ψ010 and ψ100 are hybrid orbitals formed of
spherical polar orbitals�2p0,�2s0 and�1s0. Unlike hybrid
orbitals introduced earlier, in ψ010 and ψ100 the weight of
each of the spherical polar orbital depends on the distance
between a nucleus and the dummy centre, and substan-
tially alters when R varies.

In Figures 4–6 is shown the transformation of
spheroidal amplitude functions ψ020, ψ110 and ψ011 as
distance R increases from R = 0 to R = 50; tenden-
cies analogous to those shown in Figures 2 and 3 are
observable in these figures. Amplitude functions ψ020,
ψ110 and ψ200 (not shown) are hybrid orbitals formed of
spherical polar orbitals �3d0, �3p0, �3s0, �2p0, �2s0 and
�1s0. Amplitude functions ψ011 and ψ101 (not shown)
are hybrid orbitals formed of spherical polar orbitals
�3d1, �3p1 and �2p1. At R = 50, ψ011 and ψ101 resem-
ble strongly the paraboloidal amplitude function with
quantum numbers (011) and (101). Figures 4–6 con-
firm an important property of spheroidal orbitals – their
shape strongly depends on the location of the dummy
centre.

5. Application

In the introduction we state that Coulomb Sturmian
amplitude functions defined in spheroidal coordinates
are the most appropriate basis functions for calcula-
tions on diatomic molecules. This statement is based
on the results obtained in [29], in which the spheroidal
Sturmian basis was used to calculate energy terms
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Figure . Coulomb spheroidal Sturmian ψ010 at distance R from a nucleus to the dummy centre: (a) R = 0, (b) R = 1, (c) R = 2 and (d)
R = 50. Parameter k is taken to have value unity.

and amplitude functions of diatomic molecules with
one electron. The similarity of one- and two-centre
orbitals in spheroidal coordinates, combined with the
completeness and effective convergence properties of
Coulomb spheroidal Sturmians, substantially speeds con-
vergence and brings the calculated results nearer the
exact ones.

We suggest that Coulomb spheroidal Sturmians are
useful basis functions for calculations on diatomic
molecules with several electrons; we expect that an
application of Coulomb Sturmians defined in spheroidal
coordinates yields results better than analogous calcula-
tions employing Coulomb Sturmians defined in spherical
coordinates, as in the case of diatomic molecules with

one electron. We proceed to describe briefly a scheme of
calculation ab initio for a diatomic homonuclearmolecule
involving two electrons.

We introduce a Coulomb spheroidal
Sturmian basis as amplitude functions in
two sets, {ψa

jm ≡ Xnξ
(ξ )Ynη

(η)e±imϕ} and
{ψb

jm ≡ Xnξ
(ξ )Ynη

(−η)e±imϕ}. Amplitude functions
in the former set correspond to the location of a nucleus
at the left centre; the latter set corresponds to the location
of a nucleus at the right centre of spheroidal coordinates.
For diatomic molecules formed of two identical atoms
the basic functions are constructed as functions sym-
metric ψ

(+)
jm = 2−1/2(ψa

jm + ψb
jm) and antisymmetric

ψ
(−)
jm = 2−1/2(ψa

jm − ψb
jm) with respect to reflection



MOLECULAR PHYSICS 155

Figure . As in Figure  but for Coulomb spheroidal Sturmianψ100.

in the plane normal to and bisecting molecular axis �R
(ra ↔ rb or equivalently η → −η).

In the approximation with fixed nuclei, the amplitude
function of two electrons with the total spin S = 0 and 1
can be represented at all separations as

�
(s=0)
pm = ∑

i, j
Cpi j(R)

(
ψimi (1)ψ jmj (2) + ψimi (2)ψ jmj (1)

)
,

�
(s=1)
pm = ∑

i, j
Cpi j(R)

(
ψimi (1)ψ jmj (2) − ψimi (2)ψ jmj (1)

)
,

(21)

in which Cpi j(R) are expansion coefficients and m =
mi + mj. Amplitude functions (21) are symmetric if
both electrons are in the symmetric or antisymmet-
ric state; (21) are antisymmetric if one electron is in
the symmetric and another is in the antisymmetric
state.

In the amplitude function (21), summation is per-
formed over all two-electron configurations of a given
symmetry. This amplitude function can be simplified
considering only four configurations ψ

(+)
10 (1)ψ(+)

10 (2),
ψ

(−)
10 (1)ψ(−)

10 (2), ψ
(+)
10 (1)ψ(−)

10 (2) and ψ
(−)
10 (1)ψ(+)

10 (2)
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Figure . Coulomb spheroidal Sturmian ψ020 at distance R from a nucleus to the dummy centre: (a) R = 0, (b) R = 2, (c) R = 5 and (d)
R = 50. Parameter k is taken to have value unity.

in the summation. In this case, we obtain two symmet-
ric amplitude functions with total spin S = 0

�
(+)
p0 = X00(ξ1)X00(ξ2)[Cp1(Y00(η1)Y00(η2)

+ Y00(−η1)Y00(−η2))

+ Cp2(Y00(η1)Y00(−η2) +Y00(η2)Y00(−η1))],
p = 1, 2

(22)
in which Cp1 = Cp11 +Cp22, Cp2 = Cp11 −Cp22 and two
antisymmetric amplitude functions with total spin S = 0
and 1

�
(−)
10 = C112X00(ξ1)X00(ξ2)(Y00(η1)Y00(η2)

− Y00(−η1)Y00(−η2)), S = 0,
�

(−)
10 = C112X00(ξ1)X00(ξ2)(Y00(η1)Y00(−η2)

− Y00(η2)Y00(−η1)), S = 1. (23)

When R → ∞ C111 = C122 = 1/2 and C211 =
−C222 = 1/2; therefore C11 = 1, C12 = 0 and C21 = 0,
C22 = 1 in (22); in the limit of separate atoms, amplitude
functions �

(+)
10 and �

(+)
20 correspond to the location of

electrons at the same or different nucleus, respectively. In
(23) the first amplitude function corresponds to the loca-
tion of electrons at the same nucleus, whereas the second
one corresponds to location of electrons at different
nuclei.

The diagonalisation of the diatomic molecular Hamil-
tonian with amplitude functions (21) produces a secular
equation for the energy terms. Retaining terms of finite
number in the secular equation and solving this equa-
tion, we find thereby the energy terms at all separations
in the appropriate approximation. With many configu-
rations we become able to calculate the one- and two-
electron highly excited states of diatomic molecules.
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Figure . As in Figure  but for Coulomb spheroidal Sturmianψ110.

In this calculation the main problem is the accurate
calculation of the matrix element for the Coulomb repul-
sion between the electrons

〈
i j

∣∣ r−1
12

∣∣lq〉 =
∫ ∫

ψ∗
imi

(�r1)ψ∗
jmj

(�r2)
∣∣�r1 −�r2

∣∣−1

× ψlml (�r1)ψqmq (�r2)d�r1d�r2. (24)

For this purpose a method [33,34] is based on
an expansion of |�r −�r|−1 over Legendre polynomials
defined in spheroidal coordinates [35] and a calcula-
tion of appropriate integrals. An explicit expression for
repulsion matrix element (24) derived in the spheroidal
Sturmian basis is presented in Appendix D.

6. Conclusion

The Coulomb Sturmian amplitude functions defined in
spherical coordinates have been long used for molec-
ular calculations. Application of Coulomb Sturmians
defined in spheroidal coordinates for calculations on
one-electron diatomic molecules is explored in [29];
we show therein that the application of a spheroidal
Sturmian basis for calculations substantially improves
the results. We attribute this improvement to the fact
that spheroidal Sturmian amplitude functions reproduce
diatomic molecular orbitals better that other functions of
exponential type.

In this work we present, in a closed algebraic form,
Coulomb spheroidal Sturmians; we demonstrate that the
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Figure. Moduli of Coulomb spheroidal Sturmian |ψ101| at distanceR fromanucleus to thedummycentre: (a)R = 0, (b)R = 5, (c)R = 20
and (d) R = 50. Parameter k is taken to have value unity.

introduced functions are related to the polynomial solu-
tions of Heun’s confluent equation. We explore the prop-
erties of spheroidal Sturmians, and show that they are
hybrid orbitals with shapes that substantially alter as R
varies. The dependence of Coulomb spheroidal Sturmi-
ans on R naturally follows from the Schrödinger equa-
tion (4), which is written for the hydrogen atom in
spheroidal coordinates and contains R as a parameter. At
two limiting cases R = 0 and R → ∞, spheroidal orbitals
are purely atomic spherical and paraboloidal orbitals,
respectively; at intermediate R they contain many fea-
tures intrinsic to diatomicmolecular orbitals. This nature
enables us to assert that Coulomb spheroidal Sturmians

are the most appropriate basis functions for calculations
on diatomic molecules. The additional advantages of the
spheroidal basis that we emphasise are that all relevant
integrals that arise inmolecular calculations are functions
of purely parameter kR, in which k is the exponent com-
mon to the basic functions; the integrals can be calculated
algebraically once and for all, with kR and nuclear charges
as parameters.

The spheroidal Sturmian basis thus seems promising;
we seek to apply this basis to calculate various characteris-
tic properties – energy terms, amplitude functions, dipole
moments, etc. – of diatomic molecules involving two or
more electrons. Particular attention will be devoted to the
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study of one- and two-electron Rydberg states of diatomic
molecules.
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Appendix A

We fix m and find the roots of algebraic equations (11).
When s = 1, separation parameter h is a solution of
quadratic equation (11.b) that has two real and distinct
roots

h1,2 = m + 1 ∓
√

(m + 1)2 + k2R2. (A.1)

When s = 2, h is a solution of cubic equation (11.c)
that has three real and distinct roots that are represented
in this trigonometric form [36]

h1,2 = −2
√−p/3 cos ((ω ∓ π)/3) + 2 (3m + 5) /3,

h3 = 2
√−p/3 cos(ω/3) + 2 (3m + 5) /3,

(A.2)
in which

p = −4(m2 + 3m + 7/3 + k2R2),

q = 8(m2 + 3m + 20/9 − 2k2R2)/3,

cosω = −(q/2)/
√

−(p/3)3.
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When s = 3, h is a solution of Equation (11.c) of fourth
degree; this equation has four real and distinct roots that
can be found by means of the Ferrari method [36].

h1,2 = −√
y/2 ∓

√(
y − p+ q/

√
2y

)
/2 − y + 3m + 7,

h3,4 = √
y/2 ∓

√(
y − p− q/

√
2y

)
/2 − y + 3m + 7.

(A.3)
Here y = √

p2/9 + 4r/3 cos(ω/3) − p/3 is one posi-
tive root of the relevant cubic resolvent and

p = −2(5m2 + 20m + 21 + 5k2R2),

q = 16(m2 + 4m + 4 − 2k2R2),

r = 9m2 + 72m3 + 206m2 + 248m + 105 + k2R2(18m2

+ 72m + 50 + 9k2R2),

cosω = (p3 − 36pr + 27q2/2)/(p2 + 12r)3/2.

When s = 4, 5, . . ., we arrive at equations of fifth,
sixth, … degree that can be solved only numerically.

Appendix B

Coulomb Sturmians defined in spherical coordinates are
normalised by the condition [4]

∫
�∗

nlm(�r)
1
r
�nlm(�r)d�r = k

n
. (B.1)

For spheroidal Sturmians ψnξnηm =
CnξnηmXnξ

(ξ )Ynη
(η)e±imϕ the condition for normali-

sation is expressible as

πR2

2
C2
nξnηm

∫ ∞

1

∫ 1

−1
X2
nξ

(ξ )Y 2
nη

(η)(ξ − η)dξdη = k
n
.

(B.2)

Using Equation (B.2), we have calculated the normal-
ising factors for some amplitude functions:

C000 = k3/2

π1/2 , (B.3)

C010 = k5/2R
2π1/2

[
1 + k2R2

2
+ 1

k2R2

(
1 −

√
1 + k2R2

)2
]−1/2

,

C100 = k5/2R
2π1/2

[
1 + k2R2

2
+ 1

k2R2

(
1 +

√
1 + k2R2

)2
]−1/2

,

(B.4)

C001 = k5/2R
23/2π1/2 ,

Cnξnη0 = k7/2R2

25/2π1/2 [1 + 3
4

(
k2R2 + h2

k2R2

)
+ h2

(
3
16 + 2

(h−6)2

)
+ 3g2

]−1/2
,

C011 = k7/2R
2231/2π1/2

×
[
1 + k2R2

4
+ 1

k2R2

(
2 −

√
4 + k2R2

)2
]−1/2

,

(B.5)

C101 = k7/2R
2231/2π1/2

×
[
1 + k2R2

4
+ 1

k2R2

(
2 +

√
4 + k2R2

)2
]−1/2

,

C002 = k7/2R2

2331/2π1/2 .

In (B.5)Cnξnη0 = C020 if h = h1,Cnξnη0 = C110 if h = h2
andCnξnη0 = C200 if h = h3.

Appendix C

Here we represent spheroidal Sturmian amplitude
functions ψnξnηm(ξ , η, ϕ) (nξ + nη + m ≤ 2) through
Coulomb spherical Sturmians �nlm(ra, ϑa, ϕ)

ψ000 = π1/2C000

k3/2
�1s0, (C.1)

ψ010 = 2π1/2C010

k5/2R

×
[
�2p0 + 1

kR

(
1 −

√
1 + k2R2

)
�2s0 + kR

2
�1s0

]
,

ψ100 = 2π1/2C100

k5/2R

×
[
�2p0 + 1

kR

(
1 +

√
1 + k2R2

)
�2s0 + kR

2
�1s0

]
,

(C.2)

ψ001 = 23/2π1/2C001

k5/2R
�2p1,

ψnξnη0 = 25/2π1/2Cnξnη0

k7/2R2

×
[
�3d0 +

√
3h

2kR
�3p0 +

√
2h

h − 6
�3s0 + kR√

2
�2p0

+ h
2
√
2
�2s0 + g�1s0

]
,

ψ011 = 2231/2π 1/2C011

Rk7/2

×
[
�3d1 + 1

kR

(
2 − √

4 + k2R2
)

�3p1 + kR√
6
�2p1

]
,

(C.3)
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ψ101 = 2231/2π 1/2C101

Rk7/2

×
[
�3d1 + 1

kR

(
2 + √

4 + k2R2
)

�3p1 + kR√
6
�2p1

]
,

ψ002 = 2331/2π1/2C002

k7/2R2 �3d2.

In (C.3) ψnξnη0 = ψ020 if h = h1, ψnξnη0 = ψ110 if h =
h2 and ψnξnη0 = ψ200 if h = h3.

Appendix D

For r−1
12 ≡ |�r −�r|−1 we employ Neumann’s expansion

[35]

1
r12

= 2
R

∞∑
n=0

n∑
m=0

(−1)mεm(2n + 1)
[
(n − m)!
(n + m)!

]2

Pm
n (η1)Pm

n (η2)

·Pm
n (ξ<)Qm

n (ξ>) cos (m(ϕ1 − ϕ2))

(D.1)
in which εm = 2 − δm0 and Pm

n ,Qm
n are Legendre polyno-

mials of first and second kinds, respectively; ξ>, ξ< denote
the larger or the smaller of ξ1 and ξ2.

Substituting (D.1) into (26) and integrating over ϕ1
and ϕ2, we arrive at the following expression for the
matrix element:

〈
i j

∣∣ r−1
12

∣∣l p〉 = (−1)m
CR5

32

∞∑
n=0

(2n + 1)
[

(n − m)!
(n + m)!

]2

∫ ∞

1
Xi(ξ1)Xl (ξ1)Iil (ξ1)

·
[
Qm

n (ξ1)

∫ ξ1

1
Xj(ξ2)Pm

n (ξ2)Xp(ξ2)I jp(ξ2)dξ2

+ Pm
n (ξ1)

∫ ∞

ξ1

Xj(ξ2)Qm
n (ξ1)Xp(ξ2)I jp(ξ2)dξ2

]
dξ1

(D.2)
in which C = CiCjClCp, m = |mi − ml | = |mj − mp|

and

Iil (ξ ) =
∫ 1

−1
Yi(η)Pm

n (η)Yl (η)(ξ 2 − η2)dη. (D.3)

Note that, here and below, we omit m in the subscript
of the amplitude functions.

Now using Dirichlet equation [37] and carrying out
some transformations, we obtain

〈
i j

∣∣ r−1
12

∣∣l p〉 = (−1)m+1CR
5

32

∞∑
n=0

(2n + 1)
[

(n − m)!
(n + m)!

]2

{∫ ∞

1

d
dξ

[
Qm

n (ξ )

Pm
n (ξ )

] ∫ ξ

1
Xi(ξ1)Pm

n (ξ2)Xl (ξ1)Iil (ξ1)dξ1

·
∫ ξ

1
Xj(ξ2)Pm

n (ξ2)Xp(ξ2)I jp(ξ2)dξ2dξ

}
.

(D.4)
The integrand in the first integral in (D.4) can be

expressed as Wronskian W{Pm
n (ξ )Qm

n (ξ )} [38]. As a
result we derived for the repulsion matrix element

〈
i j

∣∣ r−1
12

∣∣l p〉 = CR5

32

∞∑
n=0

(2n + 1)
(n − m)!
(n + m)!

×
∫ ∞

1

F (n,m)

il (ξ )F (n,m)
jp (ξ )dξ

(ξ 2 − 1)
[
Pm
n (ξ )

]2 , (D.5)

in which

F (n,m)

il (ξ ) =
∫ ξ

1
Xi(ξ1)Pm

n (ξ1)Xl (ξ1)Iil (ξ1)dξ1 (D.6)

and Iil (ξ ) is defined by Equation (D.3).
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