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Abstract

Calculations of the continuum contributions to dipole oscillator sum rules for hydrogen
are performed using both exact and basis-set representations of the stick spectra of the
continuumwave function. We show that the same results are obtained for the sum rules
in both cases, but that the convergence toward the final results with increasing excita-
tion energies included in the sum over states is slower in the basis-set cases when we
use the best basis. We argue also that this conclusion most likely holds also for larger
atoms or molecules.

1. INTRODUCTION

Many molecular properties are expressed as sums over states; the list

includes a range of electric and magnetic properties.1,2 Also, the only

essential material constant in the simple Bethe theory of stopping of swift
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charged particles in matter, the mean excitation energy, is a sum over

states.3,4 In all cases, the sums run over all excited states of the molecules,

discrete, and continuum. Contemporary calculations of electronic struc-

ture are nearly all performed using large, but finite, basis sets. Applying

sufficiently large basis sets, one may obtain a good description of bound

and excited states of an atom or molecule, but, no matter how large and

flexible the finite basis set is, one can obtain an only approximate descrip-

tion of the continuum. The continuum contributions to the sum-over-

states part of the molecular property hence rely upon a stick-spectrum

representation of the true continuum contribution. All experience shows

that this approximation works well for a range of molecular sum rules and

other properties.5,6

In this paper, we assess the background for this experience by investigat-

ing how well the stick-spectrum representation of the continuum contribu-

tions works for a number of dipole oscillator-strength sum rules in the simple

case of hydrogen; this atom is the only one for which we know the exact

continuum wave functions.7 By comparing the computed sum rules using

both the exact wave functions and a range of finite basis sets, we can thus

acquire further insight into the background for the usefulness of the stick-

spectrum representation of continuum contributions to sum-over-states

properties of atoms and molecules.

The purpose of this paper is thus to give an improved understanding of

how the convergence toward the exact result for the sum rules—which are

known for hydrogen8,9—is obtained when we apply various basis sets as

compared to the convergence when using the correct continuum wave

function.

We first give a brief summary of the sum rules that we tested. Then fol-

low computational details and we end with the results and a discussion of the

implications of our findings.

1.1 Definition of Sum Rules
We consider electric-dipole oscillator-strength sum rules of two kinds,

Sp¼
X
n6¼n0

En�En0ð Þpfnn0 +
Z

Ep df

dE
dE (1)

and

Lp ¼ dSp

dp
¼
X
n6¼n0

En�En0ð Þpfnn0 ln En�En0ð Þ+
Z

Epln Eð Þ df
dE

dE (2)
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Here, n0 and n index the ground and excited states, respectively; f is the

dipole oscillator strength. In both equations, the summation extends over all

bound states and the integration is over the continuum. In a calculation with

a finite basis set, the integration over the continuum is approximated with a

numerical integration in which the integration points are the stick-spectrum

representation of the continuum. The integration points are always finite in

number but vary with the choice of basis set.

For large negative values of p in Eqs. (1) and (2), the sum rule in

essence depends upon only the bound-state spectrum, but, for positive

values of p, the continuum contributions to the sum rules dominate; these

are the sum rules with which we are primarily concerned in this paper.

To be able to monitor the convergence with the number of excited states

in the sum over states, we report test calculations for hydrogen using both

the exact continuum functions and calculations in a number of finite

basis sets.

The Thomas–Reiche–Kuhn (TRK) sum rule10 is probably the best

known Sp sum rule; it states that

S0¼N (3)

inwhichN is the number of electrons in the system. TheTRK sum rule holds

for exact wave functions and in the random-phase approximation (RPA)11;

the fulfillment of this sum rule is commonly used as a measure of the com-

pleteness of basis sets in basis-set calculations of dipole oscillator-strength sum

rules.12

Many other sum rules are related to properties of matter. S�2 is the static

dipole polarizability; S�2i, i¼2, 3, 4 … can be used to calculate the fre-

quency dependence of the dipole polarizability at low frequencies.13 For

an atom, S�1 is related to the quadrupole moment of the ground state

and S1 is related to the ground-state kinetic energy.8

Also, the ratio between the Lp and Sp sum rules

Ip ¼ exp
Lp

Sp

� �
(4)

is of interest in several connections, most prominently in the theory of the

stopping power as I0, the mean excitation energy, is the only material con-

stant in the simple Bethe theory of stopping.4 The broadening of a beam

after its passage through a target, in the theory of stopping power referred

to as straggling, may be related to the I1 sum rule.14
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2. COMPUTATIONAL ASPECTS

Exact calculations of sum rules for hydrogen are readily available in

the literature. As we seek to study the convergence of the sum rules as a

function of the magnitude of excited states included in the sums and inte-

grations in Eqs. (1) and (2), we repeated these calculations using exact

wave functions for both bound states and the continuum,7 making use of

advanced mathematical software (Maple).15 All those calculations were

made with either exact algebraic formulae and arithmetic or floating-point

arithmetic (precision at least 13 decimal digits) when exact formulae were

impracticable.

Basis-set calculations were performed with the DALTON program

package.16 The full excitation spectrum was generated from the RPA

method that for a one-electron system provides the exact solutions within

the given basis set. A series of basis sets were tested. We began with the

Dunning aug-cc-pVXZ, X¼4, 5, and 6, which turned out to be unable

to produce correct results for p¼1 and 2 sum rules. We had to add both

more tight and more diffuse functions to obtain agreement for all sum

rules. The final basis set (25s29p) consists of the s- and p-type functions of

Dunning’s d-aug-cc-pV6Z basis set augmented with extra tight and diffuse

functions: 1s-function (α¼18718.77), 11 sets of p-functions (α¼8.649,

21.805, 54.962, 138.51, 348.99, 879.17, 2214.3, 0.6437, 0.2015,

0.006567, 0.002056), and a set of 12s and 12p continuum-like basis func-

tions as suggested by Kaufman et al.17 with initial quantum number 1 and

terminal quantum number 12. We refer to this basis as the 13s17p+1-1-12

basis set.

3. RESULTS AND DISCUSSION

In Table 1, we report some sum rules for hydrogen calculated using

both the exact discrete and continuum wave functions, labeled Exact-

Maple, and finite basis-set calculations of both bound and continuum states.

In the latter calculation, we used the tailored 13s17p+1-1-12 basis set in both

the length and the velocity approximation as it gave the best sum rules in all

tested cases. We compare also with the value reported by Inokuti,9 which

we assume to be correct to the quoted decimal places.
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From the agreement between the length and velocity results, we con-

clude that the basis-set results have converged; from a comparison between

the last two columns in Table 1, we conclude also that they have converged

toward the correct results.

Thus, in this as in many previous applications, the basis-set calculations of

the continuum contributions to the dipole oscillator sum rules work well for

all values of p in Eqs. (1) and (2). The larger the continuum contributions to

the sum rules are, the more care one must take with the choice of basis sets.

To obtain a correct value of S2 for H, it was thus necessary to include both

tight basis functions and basis functions tailored to describe Rydberg states

and the continuum.17

We proceed to consider the convergence of the sum rule as a function of

the number of excited states included in the summation and integrations in

Eqs. (1) and (2); we see whether this convergence differs when we use the

basis-set representation of the continuum states or the exact continuum

states. This point is illustrated in Figs. 1–8 using our best basis set.

All figures illustrate that there is no perceptible difference in the exact and

basis-set calculations of the contributions to the sum rules from the bound

states. For the continuum contributions, however, the convergence toward

the correct result is slower in the basis-set cases than in the exact case. We

thus have a slightly different representation of the continuum in the two

Table 1 Calculated Sum Rules for Hydrogen in Atomic Units, Except for I0 Which Is in eV
Length Velocity Exact-Maple Inokuti9a

S�6 172.19 172.19 172.19 172.19

S�2 4.500 4.500 4.500 4.500

S�1 2.000 2.000 2.000 2.000

S0 1.000 1.000 1.000 1.000

S1 0.667 0.667 0.666 0.667

S2 1.333 1.319 1.333 1.333

L0 �0.596 �0.596 �0.596 �0.596

L1 �0.081 �0.081 �0.082 �0.082

I0 14.991 14.991 14.991 14.990

aInokuti’s results in rydberg are converted into atomic units.
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Fig. 1 The S�2 sum rule as a function of the excitation energy included in the sum over-
states in the exact case (exact) and calculated in dipole length using the best basis set
(13s17p+1-1-12). The vertical dotted line marks the onset of the continuum.
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Fig. 2 The S�1 sum rule as a function of the excitation energy included in the sum over
states in the exact case (exact) and calculated in dipole length using the best basis set
(13s17p+1-1-12). The vertical dotted line marks the onset of the continuum.
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cases, but, eventually, when all excitations are included, the full space is

spanned in both cases. Another way of expressing the same conclusion is

to state that the intensities of the dipole transitions placed in the continuum

are blue-shifted in the basis-set representation, which in turn implies a
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13s17p+1–1–12

0
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0.8

0.9

1.0

S
0

1 2 3 4 5 6

Excitation energy (au)

Fig. 3 The S0 sum rule as a function of the excitation energy included in the sum over
states in the exact case (exact) and calculated in dipole length using the best basis set
(13s17p+1-1-12). The vertical dotted line marks the onset of the continuum.
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Fig. 4 The S1 sum rule as a function of the excitation energy included in the sum over
states in the exact case (exact) and calculated in dipole length using the best basis set
(13s17p+1-1-12). The vertical dotted line marks the onset of the continuum.
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Fig. 5 The S2 sum rule as a function of the excitation energy included in the sum over
states in the exact case (exact) and calculated in dipole length using the best basis set
(13s17p+1-1-12). Notice the logarithmic scale on the energy axis. The vertical dotted line
marks the onset of the continuum.
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Fig. 6 The L0 sum rule in atomic units as a function of the excitation energy included in
the sum over states in the exact case (exact) and calculated in dipole length using the
best basis set (13s17p+1-1-12). The vertical dotted linemarks the onset of the continuum.
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Fig. 7 The L1 sum rule in atomic units as a function of the excitation energy included in
the sum over states in the exact case (exact) and calculated in dipole length using the
best basis set (13s17p+1-1-12). Notice the logarithmic scale on the energy axis. The ver-
tical dotted line marks the onset of the continuum.
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Fig. 8 The I0 sum rule in atomic units as a function of the excitation energy included in
the sum over states in the exact case (exact) and calculated in dipole length using the
best basis set (13s17p+1-1-12). The vertical dotted linemarks the onset of the continuum.
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slower convergence of a stick-spectrum representation of the continuum

contributions. Only when we include all excitation energies in the stick-

spectrum representation do we obtain the correct result; that is, only then

does the basis set span the same space as the exact continuumwave functions

for hydrogen.

One consequence of this behavior of the sum rule as a function of the

number of states included in the sum over states is that truncated sum-over-

states calculations of properties are not advisable, an issue that has been rec-

ognized for many years.18 Since the convergence of L0 and S0 (see Figs. 3

and 6) appears similar for medium continuum excitation energies, onemight

expect that the ratio of the two sum rule, that is the mean excitation energy

(see Eq. 4), might show a faster convergence as a function of the states

included in the sum over states. However, Fig. 8 shows that this does not

appear to be the case.

The Sp sum rulesmust increasemonotonically with the inclusion of more

states in the sum over states as all individual contributions in the sum in

Eq. (1) are positive. However, the introduction of the logarithm in the def-

inition of the Lp sum rule (Eq. 2) makes the behavior of Lp as a function of

the excitation energy more unpredictable. We see in Figs. 6 and 7 that both

L0 and L1 go through a minimum a bit above the ionization limit before they

attain the monotonic behavior as a function of excitation energy that we saw

for Sp sum rules.

We have tested also how the convergence of sum rules are affected by the

choice of the basis set. Only in the tailored 13s17p+1-1-12 basis set do we

obtain all sum rules correct. We have, however, considered the TRK sum

rules for which it is also possible to fulfill Eq. (3) in more modest basis sets.

The first test is illustrated in Fig. 9.

Here, we see that the Dunning basis sets show the opposite behavior rel-

ative to the exact solution as a function of the excitation energy as does the

13s17p+1-1-12 basis set. For low-lying continuum states the basis set results

lie above the exact curve. The lack of agreement for the discrete part of the

spectrum indicates, however, that these basis sets give a somewhat random

representation of the discrete excitation spectrum and must be considered

less reliable for more general sum-over-states calculations of properties.

The same conclusion holds when we work with the pure sp-basis sets as

we see from the comparisons in Fig. 10.

Only when we include the basis functions tailored by Kaufmann et al.17

to describe the continuum and Rydberg states do we obtain an effective

description both of the bound states and of all sum rules.
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Fig. 9 The S0 sum rule for the aug-cc-pVXZ, X¼4, 5, and 6 basis sets as a function of the
excitation energy included in the sum over states. The vertical dotted line marks the
onset of the continuum.
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Fig. 10 The S0 sum rule for a series of tailored basis sets (see text) as a function of the
excitation energy included in the sum over states. The vertical dotted line marks the
onset of the continuum.
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4. CONCLUSION

Using both the stick-spectrum representation of the continuum and

the exact continuum wave functions, we show how the convergence with

excitation toward the correct results for the Sp and Lp sum rules proceeds for

hydrogen, the only example for which it is possible to do both. Both pro-

cedures converge toward the same result, but the stick spectrum in the best

basis-set representation shows a slower convergence pattern than does the

one using the exact wave functions. Other convergence patterns toward

the correct results are found in less accurate basis sets.

There is no reason to believe that the specific result for hydrogen cannot

be generalized to larger and more complicated atoms and molecules. The

main reason for that belief is that, for the high-lying continuum states that

give the dominant contributions to the high-p sum rules, the continuum is

little affected by the actual form of the molecular and atomic structure.

We thus conclude that the test calculations on hydrogen yield adequate

reason to believe that the widely applied procedure of approximating the

continuum contributions with a stick-spectrum representation is able to

produce as accurate results for dipole oscillator sum rules as if we were using

a more correct continuum wave function, provided that the basis set is care-

fully chosen and balanced and that we do not truncate in the sum over states.
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