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Abstract

We survey methods elaborated for the solution of the hydrogen-atom problem in pro-
late spheroidal coordinates for the discrete spectrum. The expressions of Coulomb
spheroidal functions and Coulomb Sturmian functions defined in spheroidal coordi-
nates are collected and presented in a convenient form for their facile application in
various calculations. Exploring the properties of spheroidal Sturmians, we show that
they are the most appropriate functions for calculations on diatomic molecules.

For the continuous spectrum Coulomb spheroidal functions are obtained through
an exact solution of the appropriate one-dimensional equations, which are shown to be
Heun’s confluent equations. The derived functions are a natural generalization of the
well-known Coulomb wave functions of the continuous spectrum obtained in spherical
polar coordinates.
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1. INTRODUCTION

Hydrogen in atomic or plasma form accounts for 9 of 10 atoms in

the universe and for about three-quarters of its mass. The solution of the

hydrogen-atom problem is hence of such fundamental importance that it

warrants solution in all practicable cases. The problem is typically treated

in spherical polar and paraboloidal coordinates for both the discrete and

continuous spectra.1 The solution involves separating the spherical or parab-

oloidal variables so that the amplitude or wave functions are represented as

a product of one-dimensional functions.

In addition to spherical polar andparaboloidal coordinates, theSchr€odinger
equation for a Coulomb field is separable in prolate spheroidal coordinates.2

A Coulomb center is located at one focus of those spheroidal coordinates;

another focus lies at distance R from the Coulomb center and is a dummy

center. The separation yields three equations for the three spatial variables,

which become the familiar radial and angular equations when R tends

to zero, i.e., in spherical polar coordinates. The solutions of the equations

with nonzero R might hence be called quasi-radial and quasi-angular

functions.

Coulson and Robinson3,4 made an initial attempt to solve the hydrogen-

atom problem in spheroidal coordinates for the discrete spectrum; their

important result was a termination of the power series for the one-

dimensional functions and a derivation of Coulomb spheroidal functions

in a polynomial form. Cook and Fowler5 applied these techniques to extend

the known solutions and to study their application to chemical binding.

Using the hidden symmetry of the hydrogen atom, Sung and Herschbach6

derived Coulomb spheroidal functions for eigenstates with n � 4 and m �
4, in which n denotes the principal quantum number and m denotes the

modulus of the magnetic quantum number. For eigenstates with m ¼ 0,

Coulomb elliptic functions were obtained and used to study molecular

Rydberg states.7 In Ref. 8 we showed that a simple and straightforward

scheme of calculation enables spheroidal functions to be derived in a poly-

nomial form for, in principle, arbitrary eigenstates.

The problem of one Coulomb center in spheroidal coordinates appears

not to have been treated for the continuous spectrum; accordingly, Cou-

lomb spheroidal functions corresponding to the continuous spectrum are

not yet available in a closed algebraic form. Our purpose is to eliminate this
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deficiency in our knowledge. The one-dimensional amplitude functions,

we present as a convenient power series, which lead to a pair of three-term

recurrence relations for the quasi-angular and quasi-radial functions. The

separation parameter is determined from a continued-fraction equation,

the roots of which yield these eigenvalues.

The interest in the solution of the hydrogen-atom problem in spheroidal

coordinates9,10 arises because it is closely related to the so-called two-

Coulomb-center problem, for which the Schr€odinger equation is separable

also in spheroidal coordinates.2 In turn, a knowledge of the wave functions

of the discrete and continuous spectrum in algebraic form for an electron

moving in the field of two fixed Coulomb centers opens a new possibility

to investigate various processes involving ionization and recombination in

diatomic systems, occurring in natural and artificial plasmas, the interstellar

medium and the terrestrial atmosphere.

Attention to the solution of the hydrogen-atom problem in spheroidal

coordinates stimulated interest in Coulomb Sturmian functions derived in

prolate spheroidal coordinates. At an early stage of the development of wave

mechanics, hydrogen-like amplitude functions were considered to be satis-

factory basis functions to build orbitals of many-electron atoms; it was soon

revealed, however, that, unless the continuum be included, the hydrogen-

like functions form an incomplete set, and thus fail to yield the proper atomic

orbitals. To rectify this deficiency, Shull and L€owdin11 proposed to con-

struct basis functions in such a way as to be complete: i.e., any function

obeying the appropriate boundary conditions was expansible in terms of

the introduced basis functions. Basis sets of this type have been called a

Sturmian basis to emphasize their connection with Sturm–Liouville theory.
Coulomb Sturmian functions obtained in spherical polar coordinates have

found many applications in atomic physics. The completeness of Coulomb

Sturmians combined with their satisfactory properties of convergence makes

them suitable to construct amplitude functions of many-electron atoms.12

The efficient application of Coulomb Sturmians in atomic physics makes

possible the use of this method in molecular calculations. For systems of

one electron and many centers, calculations with Coulomb Sturmians are

reported in several papers.13,14 Coulomb Sturmians were used to treat prob-

lems involving many centers and many electrons.15,16 Generalized Sturmian

basis functions, their connection to hyperspherical harmonics and their

application to solve many-electron problems directly, without the use of

the self-consistent-field approximation, are explored elsewhere.17
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In comparison with numerous applications of Coulomb spherical and

paraboloidal Sturmian functions, spheroidal Sturmians have received little

attention. In Refs. 18,19, Coulomb spheroidal Sturmians are derived in

two limiting cases, at small and large R. The results were obtained on rep-

resenting the unknown functions in terms of Coulomb spherical (at small

R) and Coulomb paraboloidal (at large R) Sturmians. The slight attention

to spheroidal Sturmians is attributed to the fact that solutions of the appro-

priate one-dimensional equations were not recognized to be expressible

in terms of known special functions,3,4 although these equations are

now understood to be solvable directly in terms of Heun’s confluent

functions.20,21

The aim of the present work is thus, first, to collect and to present in a

convenient form the expressions of Coulomb spheroidal and spheroidal

Sturmian functions for their facile application in various calculations and,

second, to solve the hydrogen atom problem for the continuous spectrum

in spheroidal coordinates and to obtain the spheroidal quasi-radial and quasi-

angular functions in an explicit algebraic form. We concentrate on a direct

solution of the hydrogen-atom problem, making no use of other and sophis-

ticated methods such as using a hidden symmetry of the hydrogen atom, or a

group-theoretical approach. We demonstrate that Coulomb spheroidal

functions derived for the discrete spectrum are naturally obtained hybrid

functions that reflect the dynamical properties of atomic orbitals, Coulomb

spheroidal functions derived for the continuous spectrum are a natural gen-

eralization of the well-known Coulomb wave functions of the continuous

spectrum obtained in spherical polar coordinates, and Coulomb Sturmian

functions defined in spheroidal coordinates are the most appropriate basis

functions for calculations on diatomic molecules.

The chapter is organized as follows. After stating our objective, we

derive Coulomb spheroidal functions for the discrete and continuous spec-

trum in Sections 2 and 3, respectively. In Section 4, we present Coulomb

Sturmian functions obtained in spheroidal coordinates. In Section 5, an

application of the derived function is discussed, before a conclusion in

Section 6. Atomic units ðe¼me¼ℏ¼ 1Þ are used throughout.

2. DISCRETE SPECTRUM

2.1 Basic Equations
We consider a hydrogen-like atom with nuclear charge Za. Because the

energy spectrum is independent of the system of coordinates in which
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electron motion is quantized, the problem is reduced to the derivation of the

amplitude functions. In prolate spheroidal coordinates ξ¼ (ra+ rb)/R, η¼ (ra
� rb)/R, φ¼ arctanðy=xÞ, the amplitude function is represented as this

product of three functions

ψðξ,η,φÞ¼XðξÞYðηÞe�imφ, (1)

in which quasi-radial X(ξ) and quasi-angular Y (η) functions depend upon

distance R between the centers of spheroidal coordinates; one center, at

left, has charge Za, and another, a dummy center at right, has Zb ¼ 0.

The third function in (1) is ΦðφÞ¼ e�imφ=
ffiffiffiffiffi
2π

p
. In the definition of the

spheroidal variables, ra and rb denote the distances of an electron from those

left and right centers of spheroidal coordinates. A surface of constant ξ is

an ellipsoid; a surface of constant η is an hyperboloid. These variables ξ
and η are thus defined in distinct domains 1� ξ<∞ and � 1 � η � 1

with 0 � ϕ < 2π. In spheroidal functions (1) occur spheroidal quantum

numbers nξ, nη, m, of which nξ denotes the number of nodes of quasi-radial

function XnξmðξÞ, and nη denotes the number of nodes of quasi-angular

function YnηmðηÞ.
Substituting (1) into the Schr€odinger equation for a hydrogen-like atom,

one obtains that X(ξ) and Y (η) satisfy these equations

d

dξ
ξ2�1
� �dX

dξ
+ λ+

ER2

2
ξ2�1
� �

+ZaRξ� m2

ξ2�1

� �
X ¼ 0, (2a)

d

dη
1�η2
� �dY

dη
+ �λ+

ER2

2
1�η2
� ��ZaRη� m2

1�η2

� �
Y ¼ 0, (2b)

in which appears separation parameter λ, and E¼�Z2
a =2n

2� 0 is the elec-

tron energy.

Representing the quasi-radial and quasi-angular functions as

XðξÞ¼ e�
ZaR
2n

ξ ξ2�1
� �m

2 f1ðξÞ, (3a)

YðηÞ¼ e�
ZaR
2n

η 1�η2ð Þ
m
2 f2ðηÞ, (3b)

and substituting (3a) and (3b) into (2), we obtain equations for unknown

functions f1(ξ) and f2(η),
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ξ2�1
� �d2 f1

dξ2
+ 2 m+1ð Þξ�ZaR

n
ðξ2�1Þ

� �
d f1

dξ

+ λ+m2 +m+
ZaR

n
ðn�m�1Þξ

� �
f1¼ 0,

(4a)

1�η2ð Þd
2 f2

dη2
� 2 m+1ð Þη+ ZaR

n
ð1�η2Þ

� �
d f2

dη

� λ+m2 +m+
ZaR

n
ðn�m�1Þη

� �
f2¼ 0:

(4b)

Performing transformations ξ! x with x¼ (1� ξ)/2 in (4a) and η! x

with x ¼ (1 + η)/2 in (4b), the above equations become represented in the

following form,

xðx�1Þ d
2

dx2
+ cðx�1Þ+ dx�μxðx�1Þ½ � d

dx
� aμx�αð Þ

� �
f1,2ðxÞ¼ 0,

(5)

in which

a¼�n+m+1,

c¼ d¼m+1,

μ¼�2ZaR=n,

α¼ λ+m2 +m�ZaR n�m�1ð Þ=n:

(6)

The upper and lower signs in (6) correspond to the equation for f1(x) and

f2(x), respectively.

2.2 Coulomb Spheroidal Functions
Eq. (5) is Heun’s singly confluent equation.22,23 As shown in Ref. 3, the

solutions of Eqs. (4a) and (4b) are expected to be polynomials; we hence seek

the solution of Heun’s confluent equation (5) in a polynomial form. Near

singular point x ¼ 0 (ξ ¼ 1 or η ¼ �1), the regular solutions of Eq. (5)

are represented as

f1,2ðxÞ¼
Xν
i¼0

g
ð1,2Þ
i xi, g

ð1,2Þ
0 ¼ 1, (7)

in which g
ð1,2Þ
i are polynomial coefficients that depend on R; ν defines the

degree of the polynomial.
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For polynomial (7) to be a solution of Eq. (5), polynomial coefficients

g
ð1,2Þ
i must satisfy a three-term recurrence relation.22 When parameters a,

c, d, μ and accessory parameter α are defined with (6), this three-term recur-

rence relation transforms into relation

i+1ð Þ i+m+1ð Þgð1,2Þi+1 + ν 2m+ ν+1ð Þ�ZaR

n
n�m�1ð Þ

�
�h

�i i+2m+1�2ZaR

n

	 
�
g
ð1,2Þ
i �2ZaR

n
n�m� ið Þgð1,2Þi�1 ¼ 0,

(8)

in which h¼ λ + (m+ ν)(m+ ν+ 1). Recurrence relation (8) determines the

polynomial coefficients in (7) and yields an equation for new separation

parameter h. When R! 0, (8) transforms into a two-term recurrence rela-

tion that leads to the well-known solutions in spherical polar coordinates.1

When ν ¼ 0, f1, 2(x) are polynomials of degree zero; recurrence relation

(8) converts into equation � (ZaR/n)(n � m � 1) � h ¼ 0. To satisfy this

equation for arbitrary R, conditions n ¼ m + 1 and h ¼ 0 must be fulfilled.

We thus obtain one spheroidal function ψnξnηm
with quantum numbers nξ¼

0, nη ¼ 0, and arbitrary m.

When ν ¼ 1, f1, 2(x) are polynomials of first degree; recurrence relation

(8) yields two equations for g1. To satisfy these equations simultaneously h

must be the solution of a quadratic equation, which has two real and distinct

roots, h1 < h2. As a result, we obtain two spheroidal functions ψ01m (h¼ h1)

and ψ10m (h ¼ h2) with n ¼ m + 2.

When ν ¼ 2, f1, 2(x) are polynomials of second degree; recurrence rela-

tion (8) yields three equations for g1 and g2. To satisfy these equations simul-

taneously h must be the solution of a cubic equation, which has three real

and distinct roots, h1 < h2 < h3. We obtain three spheroidal functions

ψ02m (h¼ h1), ψ11m (h¼ h2), and ψ20m (h¼ h3) with n¼m + 3. Polynomials

of third, fourth, etc. degrees and the equations for appropriate separation

parameters are readily evaluated. For given n and m, h is thus a solution of

an equation of order (n � m) that has (n � m) real and distinct roots (see

Appendix A).

To summarize the above results, we state that, for givenm and ν (ν¼ n�
m � 1 ¼ 0, 1, 2, …) Coulomb spheroidal functions are expressible as

ψnξnηm
¼Cnξnηme

�ZaRðξ+ ηÞ
2n ðξ2�1Þð1�η2Þ� �m

2
Xν
i¼0

g
ð1Þ
i

1�ξ

2

	 
iXν
i¼0

g
ð2Þ
i

1+ η

2

	 
i

e�imφ,

(9)

in which g
ð1,2Þ
0 ¼ 1,
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g
ð1,2Þ
i ¼ 1

iðm+ iÞ h� ν+1� ið Þ 2m+ ν+ ið Þ� ν+2�2ið ÞZaR

n

� ��
g
ð1,2Þ
i�1

� 2 ν+2� ið ÞZaR

n

� �
g
ð1,2Þ
i�2

�
, ði¼ 1,2,…νÞ

(10)

h is solution of the algebraic equation of order (n � m)

h�ν
ZaR

n

	 

gð1,2Þν �2ZaR

n
g
ð1,2Þ
ν�1 ¼ 0, ðν¼ 0,1,…Þ (11)

and Cnξnηm is a normalizing factor. We note that terms with the upper and

lower signs vanish in Eq. (11) obtained for h.

We proceed to establish the relation between quantum numbers nξ, nη,m

used to specify the electronic states in the general case (with R finite and

nonzero) and spherical quantum numbers n, l, m and paraboloidal quantum

numbers n1, n2, m describing the hydrogen states at R ¼ 0 and R!∞,

respectively. Employing that the number of nodal surfaces of XnξmðξÞ and
YnηmðηÞ functions is conserved as R varies,24 we obtain that n � l � 1 ¼
nξ ¼ n1 and l � m ¼ nη ¼ n2. The spheroidal quantum numbers

corresponding to degenerate states with given n and m are hence related

according to a condition that n ¼ nξ + nη + m + 1.

Spheroidal functions (9) correspond to a location of a nucleus at the left

center of spheroidal coordinates (ξ¼ 1, η¼�1). For a nucleus located at the

right center (ξ ¼ 1, η ¼ 1), quasi-radial function XnξmðξÞ remains

unchanged, whereas η !�η in quasi-angular function YnηmðηÞ. We thus

obtain that Eqs. (9)–(11) define a set of Coulomb spheroidal functions on

each center of spheroidal coordinates for the description of localized bonds.

2.3 Properties of Coulomb Spheroidal Functions
Coulomb spheroidal functions (9) with varied m are orthogonal because of

factor expð�imφÞ. The quasi-radial and quasi-angular functions in (9) are

defined with Eqs. (2a) and (2b), in which separation parameter λ plays the
role of an eigenvalue. The solutions of these equations corresponding to

a degenerate level with given n and m are hence mutually orthogonal, pro-

vided only that λ are distinct.We recall from Section 2.2 that λ are all real and
distinct. Hence hXn

0
ξm
jXnξmi¼ 0 and hYn0ηmjYnηmi¼ 0 if nξ + nη¼ n0ξ + n0η and

n0ξ 6¼ nξ, n
0
η 6¼ nη.
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Spheroidal functions ψnξnηm
ðξ,η,φÞ can be represented as linear combi-

nations of Coulomb spherical functions Ψnlm(ra, ϑa, φ). This result is achiev-
able on representing rb as rb¼ðr2a �2raRcosϑa +R2Þ1=2, in which ϑa denotes
the angle between radius vector r

!
a
and axis z, and on representing spheroidal

coordinates ξ and η through spherical ones ra, ϑa, φ in ψnξnηm
ðξ,η,φÞ. Per-

forming the appropriate calculation, we obtain that, at all separations,

ψnξnηm
ðξ,η,φÞ is a linear combination of spherical functions Ψnlm(ra, ϑa, φ)

with principal quantum number n and orbital angular-momentum quantum

number l ¼ m, m + 1, …, n � 1. The normalized spheroidal functions are

thus expressible as

ψnξnηm
¼
Xn�1

l¼m

AnlmðRÞΨnlmðra,ϑa,φÞ, (12)

in which expansion coefficients are related with the condition
P

l¼mA
2
nlm ¼ 1.

When R ! 0, one expansion coefficient is equal to one in (12) whereas the

others tend to zero. When R!∞, spheroidal function ψnξnηm
converts into

paraboloidal function ψn1n2m
with n1 ¼ nξ and n2 ¼ nη. Accordingly, Eq. (12)

transforms into the relation between the Coulomb paraboloidal and the

Coulomb spherical functions.1,25 In this limit, Anlmð∞Þ¼ hj1j2μ1μ2 lmij in

which j1¼ j2¼ (n�1)/2, μ1 ¼ (m+nξ�nη)/2, μ2¼ (m�nξ+nη)/2, and

hj1j2μ1μ2 lmij is a Clebsch–Gordan coefficient. In Appendix B are presented

spheroidal functions ψnξnηm
ξ, η, φð Þwith arbitrarym and nξ,nη� 2 in terms of

spherical functions Ψnlm(ra,ϑa,φ).
We thus obtain that, with the exception of ψ00m, the derived spheroidal

functions are hybrid functions of Coulomb spherical functions Ψnlm

corresponding to the degenerate level with n ¼ nξ + nη + m + 1 and

E¼�Z2
a =2n

2. The expression for the probability density is obtained from

Eq. (12). Taking into account that spherical function Ψnlm is a product of

radial function Rnl(ra) and spherical harmonic Ylm(ϑa, φ), we derive

ϱnξnηmðra,ϑaÞ¼
Xn�1

l, l0¼m

AnlmAnl0mRnlðraÞRnl0 ðraÞY *
lmðϑa,φÞYl0mðϑa,φÞ: (13)

The radial and angular probability densities are obtained on integrating

(13) over either spherical angles ϑa and φ or radius ra, which gives

ϱnξnηmðraÞ¼
Xn�1

l¼m

A2
nlmR

2
nlðraÞ, (14)
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for radial density and

ϱnξnηmðϑaÞ¼
Xn�1

l¼m

A2
nlmjYlmðϑa,φÞj2, (15)

for angular density, respectively.

Thus a reduction of symmetry from spherical to axial leads to the cou-

pling of spherical polar orbitals and the formation of hybrid orbitals. The

contribution of each spherical orbital within a hybrid orbital depends

strongly on distance R from a nucleus to the dummy center, and alters sub-

stantially as R varies. At two limiting cases R ! 0 and R!∞, spheroidal

functions are purely atomic orbitals, whereas at intermediate R they contain

many features intrinsic to diatomic-molecular orbitals. As graphic illustra-

tions of the progression of Coulomb spheroidal functions ψnξnηm
as distance

R increases along axis z from the spherical polar limit at R! 0 to the parab-

oloidal limit as R!∞, we display plots of surfaces of constant ψnξnηm
func-

tions at a magnitude that is 1/100 of the maximum magnitude. Whereas

the functions are expressed in terms of spheroidal coordinates, the figures

are plotted in the customary Cartesian coordinates. At any value of R,

the surface for function ψ000 is a sphere (not shown); for ψ010, ψ100,

and ψ020 the shapes vary with R as shown in Figs. 1–3.
Fig. 1 shows that, atR¼ 0, the shape of spheroidal orbital ψ010 coincides

with the shape of spherical polar orbital Ψ2p0.When R increases, this shape

alters such that the negative lobe contracts monotonically along axis z,

whereas the positive lobe expands along axis z; When R ≫ 1, the negative

lobe is much smaller than the positive lobe. When R!∞, the shape of

spheroidal orbital ψ010 resembles strongly the shape of paraboloidal orbital

with quantum numbers n1 ¼ 0 and n2 ¼ 1.

At R ¼ 0, the shape of spheroidal orbital ψ100 has central symmetry as

shown in Fig. 2, and coincides with the shape of spherical polar orbital

Ψ2s0. When R increases, the spheroidal orbital ψ100 has its center clearly dis-

placed along negative axis z. When R ≫ 1, the shape of spheroidal orbital

ψ100 resembles strongly the shape of paraboloidal orbital with quantum

number n1 ¼ 1 and n2 ¼ 0. According to Figs. 1 and 2, at R ≫ 1 the shape

of spheroidal orbitals ψ010 and ψ100 are practically identical, but oriented

oppositely along axis z.

Fig. 3 shows the shape of spheroidal orbital ψ020 as distance R increases

fromR¼ 0 toR≫ 1. AtR¼ 0, the shape of this spheroidal orbital coincides
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Fig. 1 Coulomb spheroidal function ψ010 at distance R from a nucleus to the dummy
center: (A) R ¼ 1/10a0, (B) R ¼ 1a0, (C) R ¼ 2a0, and (D) R ¼ 50a0ða0 ¼ℏ2=mee2Þ.

Fig. 2 As in Fig. 1 but for Coulomb spheroidal function ψ100.



with the shape of spherical orbital Ψ3d0. When R ≫ 1, the shape of

spheroidal orbital ψ020 resembles strongly the shape of paraboloidal orbital

with quantum numbers n1 ¼ 0 and n2 ¼ 2. The tendencies analogous

to those shown in Figs. 1–3 are also observable for the other spheroidal

orbitals.

Thus for given n and m the most stretched orbital toward the dummy

center is an orbital with a maximum number of quasi-angular nodes,

whereas the most stretched orbital in the opposite direction is an orbital with

a maximum number of quasi-radial nodes. The orbital with nη ¼ n� m� 1

is hence a bonding orbital, as distinct from the orbital with nξ ¼ n � m � 1

that is an antibonding orbital.

3. CONTINUOUS SPECTRUM

For the continuous spectrum the amplitude function is defined by

expression (1) in which quasi-radial X(ξ) and quasi-angular Y (η) functions
are solutions of Eqs. (2a) and (2b) with E > 0.

Fig. 3 Coulomb spheroidal function ψ020 at distance R from a nucleus to the dummy
center: (A) R ¼ 1/10a0, (B) R ¼ 2a0, (C) R ¼ 5a0, and (D) R ¼ 50a0.
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Representing these functions as

XðξÞ¼ ei
pR

2
ξ ξ2�1
� �m

2 f1ðξÞ, (16a)

YðηÞ¼ ei
pR

2
η 1�η2ð Þ

m
2 f2ðηÞ, (16b)

in which p¼� ffiffiffiffiffiffi
2E

p
, and substituting (16a) and (16b) into (2), we obtain

equations for unknown functions f1(ξ) and f2(η).
For f1(ξ) we obtain

ξ2�1
� �d2f1

dξ2
+ 2 m+1ð Þξ+ ipR ξ2�1

� �� �df1
dξ

+ λ+m2 +m+R Za + ip m+1ð Þð Þξ� �
f1¼ 0:

(17)

The equation for f2(η) coincides with (17) but with ξ ! η and f1 ! f2. We

suppose that functions f1(ξ) and f2(η) are finite in the entire domain of their

definition including the boundaries at ξ ¼ 1, ξ!∞ and η ¼ �1.

3.1 Quasi-Angular Functions
To begin, we find the eigenvalues and eigenfunctions of quasi-angular

equation

1�η2ð Þd
2f

dη2
� 2 m+1ð Þη� ipRð1�η2Þ� �df2

dη

� λ+m2 +m+R Za + ipðm+1Þð Þη½ � f2¼ 0:

(18)

Using the obtained values for separation parameter λ, we then solve the

quasi-radial equation (17).

As for the discrete spectrum, performing transformation η! x with x¼
(1 + η)/2, and assuming that

a¼m+1� iZa=p,
c¼ d¼m+1,

μ¼�2ipR,

α¼ λ+m2 +m� Za + ipðm+1Þð ÞR,
(19)

we obtain Heun’s confluent equation (5).

Near singular point x¼ 0 (or η¼�1), the regular solutions of Eq. (5) are

represented as a power series,22
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f2ðxÞ¼
X∞
k¼0

gkx
k, (20)

in which g0 ¼ 1 and x varies in domain [0, 1].

For expansion (20) to be a solution of Eq. (5), expansion coefficients gk
must satisfy a three-term recurrence relation,

Akgk+1 + Bk�αð Þgk +Ckgk�1¼ 0, (21)

with

Ak¼ðk+1Þðk+ cÞ,
Bk¼�k k+ c + d+ μ�1ð Þ,
Ck¼ μ k+ a�1ð Þ, (22)

and a, c, d, μ, and α defined in (19).

We proceed to calculate separation parameter λ at given p as a function of
R. Recurrence relation (21) leads to a continued-fraction equation in α, the
roots of which determine these eigenvalues and thereby determine λ. For a
practical calculation it is convenient to employ the equation

α�Bk0 �
Ak0�1Ck0

α�Bk0�1� Ak0�2Ck0�1

α�Bk0�2�⋯�A0C1=ðα�B0Þ
¼ Ak0Ck0 + 1

α�Bk0 + 1� Ak0 + 1Ck0 + 2

α�Bk0 + 2�⋯

:

(23)

This equation is obtained on assuming that k ¼ k0 in (21), determining

gk0�1=gk0 to initiate the calculation, performing transformation k0 ! k0 + 1

and equating ðgk0=gk0 + 1Þ�1
to gk0 + 1=gk0 , which is also determined from (21).

For arbitrary R, the general solution of Eq. (23) can be found only

numerically, but in the limiting case, i.e., at R ≪ 1a0, (23) can be solved

algebraically using an iterative method. A small calculation yields

αðRÞ¼�k0ðk0 + 2m+1Þ� Za + ipðm+1Þ½ �R+OðR2Þ: (24)

When R tends to zero, the eigenvalues and eigenfunctions of angular

equation (18) are well known. In this case λ ¼ �l(l + 1) in which l ¼ 0,

1, 2, … is the quantum number for orbital angular momentum; the

eigenfunctions are associated Legendre polynomials Pm
l ðηÞ. To fulfill this
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condition whenR! 0, we assume that k0¼ l�m in (24). Thus fixingm and

k0, we define l and thereby determine the associated Legendre polynomial

that transforms the solution of quasi-angular equation (18) when R! 0. To

specify the states in the general case, i.e., at R > 0, it is hence suitable to use

quantum numbers k0 andm. Substituting each root of Eq. (23), αk0mðRÞ, into
recurrence relation (21) and calculating the expansion coefficients in (20),

through Eq. (16b) we determine quasi-angular functions Yk0mðηÞ for given
R and p.

We have thus two solutions: Y
ð+ Þ
k0m

ðηÞ with p¼ ffiffiffiffiffiffi
2E

p
> 0 and Y

ð�Þ
k0m

ðηÞ
with p¼� ffiffiffiffiffiffi

2E
p

< 0. The general solution is a sum of these solutions

Yk0mðηÞ¼
1

2
Y

ð+ Þ
k0m

ðηÞ+Y
ð�Þ
k0m

ðηÞ
 �

: (25)

Relation (24) shows that, when p!�p, the real part of αk0mðRÞ does not
change, whereas the imaginary part changes sign. The same tendency is

observable for the expansion coefficients from recurrence relation (21) when

p!�p: Reg
ð+ Þ
k ¼Reg

ð�Þ
k and Img

ð+ Þ
k ¼�Img

ð�Þ
k . Two terms in (25) hence

yield two complex-conjugate functions in Yk0mðηÞ, which can be represen-

ted as

Yk0mðηÞ¼ ð1�η2Þm=2Re ei
pj jR
2

η
X∞
k¼0

g
ð+ Þ
k

1+ η

2

	 
k
( )

: (26)

The derived expression shows that the quasi-angular amplitude functions are

real functions at all separationsR. We thus obtain that Yk0mðηÞwith varied k0
and the same m form a full orthonormal set of amplitude functions that are

defined in domain [�1, 1]; αk0mðRÞ or λk0mðRÞ form a set of nondegenerate

eigenvalues. Quantum number k0 ¼ 0, 1, 2, … determines the number of

nodes of the quasi-angular functions defined in (26).

Employing the expressions derived above, we calculated the eigenvalues

and eigenfunctions of the quasi-angular equation for selected states and elec-

tron energy E ¼ ε0 ¼ 27.21 eV. In all calculations Za is taken to be unity.

Fig. 4 shows αk0m as a function of R obtained for k0 ¼ 0, 1, 2 and m ¼ 0, 1

through the numerical solution of Eq. (23). We refrain from presenting

αk0mðRÞ with k0 > 2 and m > 1 because that behavior is analogous to the

previous ones.

Concerning the results presented in Fig. 4, we note that, for given quan-

tum numbers k0, m and parameters p and R, Eq. (23) has multiple roots,
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which have complex values. We chose those roots that led to a continuous

change of αk0mðRÞ when R varied. Another criterion is a limiting value at

R ¼ 0, for given k0 and m, that must be αk0mð0Þ¼�k0ðk0 + 2m+1Þ
according to Eq. (24). Numerical calculations confirm that the real part

of αk0mðRÞ does not change, whereas the imaginary part changes sign when

p !�p. An examination of Fig. 4 clearly displays that Imαk0m depends

linearly on R, which can be interpolated with function

Imαk0m¼�pðm+1ÞR (27)

ak0m

R/a0

A

10

0

10

0

–10

0 5 10

B

Fig. 4 Parameter αk0m as a function of R obtained for k0¼ 0, 1, 2 and (A)m¼ 0, (B)m¼ 1
by numerical solution of Eq. (23). Black curves—Reα0m, blue curves—Reα1m, green cur-
ves—Reα2m. Upper red curves—Imαk0m with p < 0, lower red curves—Imαk0m with p > 0.
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at all separations R. Eqs. (19) and (27) show that separation parameter λk0m
is, correctly, a real function of R. Expression (27) simplifies considerably the

finding of the roots of Eq. (23).

Using expression (26), we calculated quasi-angular functions Yk0mðηÞ for
k0 ¼ 0, 1, 2, m ¼ 0, 1 and several R; the results of these calculations are

displayed in Fig. 5. Fig. 5A–C shows that Y00(η) is a function free of nodes,

whereas Y10(η) and Y20(η) have one and two nodes, respectively, at all

separations R. As expected Y00(η), Y10(η), and Y20(η) strongly resemble

Legendre polynomials P0(η)¼ 1, P1(η)¼ η, and P2(η)¼ (3η2� 1)/2 at small

R. When R increases, the deviation from the Legendre polynomials

increases substantially. Quasi-angular function Y01(η), which has no node

2

A Y00(h)

1.5

1

0.5

0
–1 1–0.5 0.50

B Y10(h)

–0.5

–1
–1 1

1

–0.5 0.5

0.5

0

0

1
C Y20(h)

0.5

0

–0.5

–1 1–0.5 0.50

D Y01(h)

–1 1

1

–0.5 0.5

0.5

1.5

0
0

h h

h h
Fig. 5 Quasi-angular functions Y00(η), Y10(η), Y20(η), and Y01(η) for R ¼ 0.01a0 (black cur-
ves), R ¼ 1.0a0 (green curves), R ¼ 2.0a0 (blue curves), R ¼ 3.0a0 (red curves), R ¼ 5.0a0
(magenta curves). The functions are normalized according to a condition Yk00ð�1Þ¼ 1.
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at any separation R, is displayed in Fig. 5D. This figure shows that Y01(η)

strongly resembles associated Legendre polynomial P1
1ðηÞ¼ ð1�η2Þ1=2 for

R ¼ 0.01 a0. For all calculated R, expression (26) obtained for quasi-angular

function Yk0mðηÞ converges rapidly.

3.2 Quasi-Radial Functions
We turn to Eq. (17) for f1(ξ); this equation is obtained from quasi-radial

equation (2a), which is Heun’s confluent equation. Following Jaffe,26 we

take

f1ðξÞ¼ ðξ+1Þσ
X∞
s¼0

qst
s, (28)

in which q0 ¼ 1 and t ¼ (ξ � 1)/(ξ + 1) varies in the domain [0, 1]; σ is a

constant quantity to be determined.

Substituting (28) into (17) and making the appropriate calculation,

we obtain

tð1� tÞ2 d
2

dt2
+ 2ðσ�1Þð1� tÞt+ ðm+1Þð1� t2Þ+2ipRt
� � d

dt
+ λ+m2 +m

�

+σ ðσ�1Þt+ ðm+1Þð1+ tÞð Þ+R
Za + ipðm+1Þð Þð1+ tÞ+2iσpt

1� t

�X∞
s¼0

qst
s¼ 0:

(29)

The latter term in Eq. (29) has a singularity at t ¼ 1; to remove it, we

assume that

σ¼�m�1+ iZa=p: (30)

With the singularity at t ¼ 1 thus removed, we thereby determine σ.
To fulfill Eq. (29) with σ so defined, expansion coefficients qsmust satisfy

a three-term recurrence relation

Asqs+1�Bsqs +Csqs�1 ¼ 0, (31)

in which

As ¼ðs+1Þðs+m+1Þ,
Bs¼ 2sðs�σ� ipRÞ�σðm+1Þ+2iσpR�αk0mðRÞ,
Cs ¼ðs�1�σÞðs�m�1�σÞ;

(32)

αk0mðRÞ are the roots of Eq. (23). Derived recurrence relation (31) and

Eqs. (28) and (16a) together yield two solutions of quasi-radial equation (2a):
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X
ð+ Þ
Ek0m

ðξÞ with p > 0 and X
ð�Þ
Ek0m

ðξÞ with p < 0. These solutions are complex-

conjugate functions because Reqð+ Þ
s ¼Reqð�Þ

s and Imqð+ Þ
s ¼�Imqð�Þ

s ; see

Eqs. (30)–(32).
The general solution of Eq. (2a) is a sum of the solutions obtained above,

which is a real function at all separations R. One hence writes for the quasi-

radial functions defined in spheroidal coordinates that

XEk0mðξÞ¼
ðξ2�1Þm=2
ðξ+1Þm+1

Re ei
pj jR
2

ξðξ+1Þi
Za

pj j
X∞
s¼0

qð+ Þ
s ts

( )
: (33)

We proceed to calculate quasi-radial functions XEk0mðξÞ for E ¼ 1.0 ε0
and several R using expression (33). The convergence in (33) is less rapid

than for the quasi-angular functions, especially when R increases. For non-

zero and finite R, when distance ra between the electron and the nucleus

increases infinitely, spheroidal variable ξ¼ 2ra=R!∞.2 In this limit

Eq. (2a) transforms into the radial equation obtained in spherical polar coor-

dinates. When ξ!∞, the solution of quasi-radial equation (2a) must hence

coincide with the solution of the familiar radial equation. We apply this

condition to find the quasi-radial function in the asymptotic region, i.e.,

in the region in which ξ ≫ 1. Fig. 6 shows (ξ + 1)XE00(ξ) as a function
of ξ; the same figure shows radial function,1

raRplðraÞ¼ sin pra +
Za

p
ln2pra�π

2
l+ δl

	 

,

δl ¼ argΓ l +1� iZa=pð Þ,
(34)

in which ra is replaced with Rξ/2, l is replaced with k0 + m and p¼ ffiffiffiffiffiffi
2E

p
.

Fig. 6A displays that in the asymptotic region the depicted functions have the

same phases but different amplitudes. Fig. 6B shows functions (ξ+ 1)XE00(ξ)
and raRp0(ra) but with equalized amplitudes in the far asymptotic region.

Fig. 6B clearly displays that (ξ + 1)XE00(ξ) transforms into raRp0(ra) when

ξ increases. This tendency is observable for the quasi-radial functions with

quantum numbers other than k0 ¼ 0 and m ¼ 0.

We thus obtain that, for finite ξ, the quasi-radial functions are defined

with expression (33), whereas, when ξ!∞, XEk0mðξÞ become represented

in the familiar form

XEk0mðξÞ!
Ck0m

ξ
sin

pR

2
ξ+

Za

p
lnpRξ�π

2
ðk0 +mÞ+ δk0m

	 

, (35)

in whichCk0m is a normalizing factor, δk0m ¼ argΓ k0 +m+1� iZa=pð Þ is the
Coulomb phase shift and Γ(x) is the gamma function.
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In Fig. 7, we demonstrate quasi-radial amplitude functions XE00(ξ) cal-
culated for R/a0 ¼ 0.5 and 1.0. The functions are plotted using expression

(33) for ξ< 38/R and expression (35) for ξ> 38/R; in (35) the normalizing

factor is determined on equating the amplitudes at the boundary of two

regions. Fig. 7 shows that the quasi-radial functions are oscillatory at all sep-

arations R but with a decreasing amplitude; the frequency of oscillation

increases when R increases.

4. COULOMB STURMIAN BASIS IN SPHEROIDAL
COORDINATES

The main characteristics of the Coulomb Sturmian basis become evi-

dent by reference to the hydrogenic basis. By definition, the Coulomb

Sturmian functions ψ satisfy this equation,15,16

1

A
(x +1)XE00(x ), rRp0(r )

0

–1

1B

0

10 20 30 40
–1

x

Fig. 6 Functions (ξ + 1)XE00(ξ) (blue curves) and raRp0(ra) with ra ¼ Rξ/2 (red curves) as a
function of ξ. The amplitudes are equalized, (A) at ξ ¼ 1 and (B) at ξ ¼ 38; R ¼ a0.
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�1

2
Δ�Za

ra
�E

	 

ψ ¼ 0, (36)

in which E¼�κ2/2< 0 is a fixed parameter, Za¼ nκ and n¼ 1, 2,…. We

seek the solutions of Eq. (36) in prolate spheroidal coordinates ξ, η, φ.
On presenting ψ as a product of three functions ψ ¼ X(ξ)Y (η)e�imφ

equation (36) becomes expressed in this form,

d

dξ
ξ2�1
� �dX

dξ
+ λ�k2R2

4
ξ2�1
� �

+ nkRξ� m2

ξ2�1

� �
X ¼ 0, (37a)

d

dη
1�η2
� �dY

dη
+ �λ�k2R2

4
1�η2
� ��nkRη� m2

1�η2

� �
Y ¼ 0: (37b)

Here λ is a separation parameter, energy E¼�Z2
a =2n

2 is the same for

all solutions and charge Za is chosen to make the solutions isoenergetic.

Eqs. (37a) and (37b) coincide with Eqs. (2a) and (2b) in which E is replaced

with � κ2/2 and Za with nκ. The approach elaborated in Section 2.2 for

the solution of Eqs. (2a) and (2b) might hence be employed for the solution

of Eqs. (37a) and (37b). Representing X(ξ) and Y (η) as

XðξÞ¼ e�
κR
2
ξ ξ2�1
� �m

2 f1ðξÞ, (38a)

YðηÞ¼ e�
κR
2
η 1�η2ð Þ

m
2 f2ðηÞ, (38b)

we obtain for unknown functions f1(ξ) and f2(η) equations (4a) and (4b) in

which Za/n is replaced with κ.

1

0.5

20 40 60

0

XE00(x )

x

Fig. 7 Quasi-radial functions XE00(ξ) for R ¼ 0.5a0 (red curve) and R ¼ 1.0a0 (blue curve).
The functions are normalized according to condition XE00(1) ¼ 1.
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Performing transformations ξ! x with x¼ (1� ξ)/2 in (4a) and η! x

with x ¼ (1 + η)/2 in (4b), we obtain Heun’s confluent equation (5), in

which

a¼m+1�n,

c¼ d¼m+1,

μ¼�2κR,
α¼ λ+m2 +m�κR n�m�1ð Þ:

(39)

The upper and lower signs in (39) correspond to the equations for f1(ξ) and
f2(ξ), respectively.

In accordance with the approach developed in Section 2.2, we represent

unknown functions f1, 2(x) as

f1,2ðxÞ¼
Xν
i¼0

d
ð1,2Þ
i xi, d

ð1,2Þ
0 ¼ 1: (40)

Here d
ð1,2Þ
i are polynomial coefficients that must satisfy a three-term recur-

rence relation (8) in which Za/n is replaced with κ. The further derivation is
analogous to the derivation of Coulomb spheroidal functions in Section 2.2.

As a result, we obtain for Coulomb Sturmian functions defined in prolate

spheroidal coordinates that

ψnξnηm
¼Cnξnηme

� κRðξ+ ηÞ
2 ðξ2�1Þð1�η2Þ� �m

2
Xν
i¼0

d
ð1Þ
i

1�ξ

2

	 
iXν
i¼0

d
ð2Þ
i

1+ η

2

	 
i

e�imφ,

(41)

in which d
ð1,2Þ
0 ¼ 1,

d
ð1,2Þ
i ¼ 1

iðm+ iÞ h� ν+1� ið Þ 2m+ ν+ ið Þ� ν+2�2ið ÞκR½ �f d
ð1,2Þ
i�1

� 2 ν+2� ið ÞκR½ �dð1,2Þi�2

o
, ði¼ 1,2,…,νÞ

(42)

h is solution of the algebraic equation of order (n � m),

h�νκRð Þdð1,2Þν �2κRdð1,2Þν�1 ¼ 0, ðν¼ 0,1,…Þ (43)

and Cnξnηm is a normalizing factor; nξ and nη denote the number of nodes of

functions XnξmðξÞ and YnηmðηÞ, respectively; these quantum numbers are

related by the condition n ¼ nξ + nη + m + 1. The terms with the upper
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and lower signs vanish in Eq. (43) obtained for h. For the states with arbitrary

m and nξ, nη � 2 spheroidal Sturmians are presented in Appendix C.

Spheroidal Sturmian functions (41) with variedm are orthogonal because

of factor expð�imφÞ. Moreover, hXn
0
ξm
jXnξmi¼ 0 and hYn

0
ηm
jYnηmi¼ 0 if

nξ + nη¼ n0ξ + n0η and n0ξ 6¼ nη, n
0
ξ 6¼ nη (see the discussion at the beginning

of Section 2.3). These properties, characteristic of Coulomb spheroidal

functions, are intrinsic also for spheroidal Sturmians.

The above derived spheroidal Sturmian functions ψnξnηm
correspond to

the location of a nucleus at the left center of spheroidal coordinates (ξ ¼ 1,

η ¼ �1). If a nucleus be located at the right center (ξ ¼ 1, η ¼ 1), XnξmðξÞ
remains unchanged, whereas η !�η in YnηmðηÞ.

5. APPLICATION

Several algorithms have been elaborated to calculate the energy terms

and amplitude functions of theZaeZb quasi-molecule—the system formed of

two nuclei with charges Za, Zb, and an electron, for both the same27,28 and

disparate29,30 nuclei. These algorithms enable us to calculate numerically the

characteristics of a ZaeZb quasi-molecule with a given accuracy. Hence

ZaeZb is an ideal system for the estimation of the efficiency of spheroidal

Sturmian functions in diatomic-molecular calculations. Despite the elabo-

rated algorithms for the ZaeZb system, attempts to find bases leading to rapid

convergence in molecular calculations are continuing (see Refs. 31,32 and

references therein).

The amplitude function of an electron moving in the field of two fixed

nuclei with charges Za and Zb is represented as follows:

Ψðξ,η,φÞ¼ χðξ,ηÞe�imφ: (44)

Substituting (44) into the appropriate Schr€odinger equation, one obtains
that χ(ξ, η) satisfies the equation

∂

∂ξ

�
ðξ2�1Þ ∂

∂ξ
+

∂

∂η
ð1�η2Þ ∂

∂η
+
R2ε

2
ðξ2�η2Þ

+ðZa +ZbÞRξ�ðZa�ZbÞRη� m2

ξ2�1
� m2

1�η2

�
χðξ,ηÞ¼ 0,

(45)

in which ε(R) is the electron energy.
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We introduce the Coulomb Sturmian basis as functions in two sets

XnξmðξÞYa
nηm

ðηÞe�imφ
n o

and XnξmðξÞYb
nηm

ðηÞe�imφ
n o

, in which the former

set corresponds to the location of the nucleus with chargeZa at the left focus

and the latter corresponds to the location of the nucleus with chargeZb at the

right focus of spheroidal coordinates. Our calculating scheme is based on an

expansion of function χ(ξ, η) over the basis introduced above. We represent

χ(ξ, η) at all separations as

χ¼
X∞

n¼m+1

Xn�m�1

nξ¼0

Ca
nnξ
ðRÞXnξmðξÞYa

nηm
ðηÞ+Cb

nnξ
ðRÞXnξmðξÞYb

nηm
ðηÞ

 �
,

(46)

in which Ca,b
nnξ
ðRÞ are the expansion coefficients and nη ¼ n � nξ � m � 1.

We proceed to assume that ε¼�κ2/2 in Eq. (45) and that the number of

Coulomb Sturmians on each nucleus is restricted. Substituting (46) into (45)

and performing the appropriate calculations, we obtain the equations in a

finite system for the unknown expansion coefficients. The condition that

the determinant of the coefficients of the unknowns vanishes gives the equa-

tion for κ and thereby determines the electronic energy. Using the derived

equations, we calculated the electronic energies for some low-lying states of

the hydrogen molecular ion H +
2
20 and compared with the analogous ones

obtained on employing the Coulomb Sturmian basis set defined in spherical

polar coordinates.15 In our calculations, we restricted a basis size to ten

Sturmians because the same number of basis functions on each nucleus

has been used in Ref. 15.

Table 1 shows that, at internuclear distances R > 3a0, when the interac-

tion of an electron with its own nucleus is much larger than the interaction

with another nucleus, the electronic energies calculated for the ground state

in Refs. 15 and 20 coincide. When the interaction of an electron with both

nuclei attains the same order of magnitude, i.e., at intermediate and small

internuclear distances,R< 3a0, the results obtained in the basis of spheroidal

Sturmians are much nearer the exact ones.27 The difference between the

data presented in the third and fourth columns does not exceed 6 �
10�5ε0 at all separations, whereas for data given in the second column the

difference is � 1 � 10�3ε0. Examenation of Table 2 shows the same ten-

dency: the difference between the exact electronic energies and calculated

in Ref. 20 with ten basis functions on each nucleus does not exceed 3 �
10�6ε0 at all separations, whereas for the electronic energies obtained in

Ref. 15 this difference is 5 � 10�3ε0.
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Table 2 Electronic Energy ε(R)/ε0 as a Function of Internuclear Distance
R for the First Excited State 2pσu of H+

2
R/a0 Data From Ref. 15 Data From Ref. 20 Exact Data27

0.1 �0.500613 �0.500667 �0.500667

0.2 �0.502489 �0.502677 �0.502677

0.4 �0.509921 �0.510784 �0.510784

0.6 �0.522165 �0.524310 �0.524310

0.8 �0.538910 �0.542746 �0.542746

1.0 �0.559748 �0.564814 �0.564814

2.0 �0.667529 �0.667531 �0.667534

3.0 �0.701418 �0.701417 �0.701418

4.0 �0.695551 �0.695550 �0.695551

5.0 �0.677292 �0.677292 �0.677292

6.0 �0.657311 �0.657311 �0.657311

8.0 �0.623606 �0.623606 �0.623606

10.0 �0.599901 �0.599901 �0.599901

Table 1 Electronic Energy ε(R)/ε0 as a Function of Internuclear
Distance R for the Ground State 1sσg of H+

2
R/a0 Data From Ref. 15 Data From Ref. 20 Exact Data27

0.1 �1.97822 �1.978242 �1.978242

0.2 �1.92846 �1.928620 �1.928620

0.4 �1.80006 �1.800753 �1.800754

0.6 �1.67030 �1.671421 �1.671485

0.8 �1.55305 �1.554435 �1.554480

1.0 �1.45032 �1.451755 �1.451786

2.0 �1.10220 �1.102614 �1.102634

3.0 �0.910878 �0.910879 �0.910896

4.0 �0.796074 �0.796074 �0.796085

5.0 �0.724413 �0.724413 �0.724420

6.0 �0.678631 �0.678631 �0.678636

8.0 �0.627569 �0.627569 �0.627570

10.0 �0.600578 �0.600578 �0.600579

15.0 �0.566716 �0.566716



The most striking feature of Rydberg states of long-range diatomic mol-

ecules predicted in Ref. 33 is that some molecular Rydberg states possess

large electric-dipolar moments, which, in any long-lived molecular state,

presents a promising opportunity for manipulation and control through

the application of an electric field. A simple model of these molecules has

been elaborated: Rydberg states are described with a sum of degenerate

Coulomb elliptic wave functions; the attraction between a weakly bound

electron and a ground-state atom is described with a short-range potential.7

In this way, many qualitative features have been understood. The present

work shows that to obtain more precise, quantitative results, Rydberg states

must be described with Coulomb Sturmian functions defined in spheroidal

coordinates; the attraction between a weakly bound electron and two

atomic cores should be treated using a realistic potential.

6. CONCLUSION

Our treatment of the hydrogen atom in prolate spheroidal coordinates

demonstrates that Coulomb spheroidal functions are related to the solutions

of Heun’s confluent equation, which enables us to present Coulomb sphe-

roidal functions in a closed algebraic form. Unlike hydrogen molecular ion

H +
2 , for which the wave functions are not expressible in a polynomial form,

the wave functions for the hydrogen atom in spheroidal coordinates are

expressible as the polynomial solutions of Heun’s confluent equation. For

given principal quantum number n and magnetic quantum number m

quasi-radial XnξmðξÞ and quasi-angular YnηmðηÞ wave functions are polyno-
mials of order n�m� 1. Coulomb spheroidal functions with different n and

m but the same n�m or nξ+ nη are thus products of two similar polynomials

defined in distinct regions of variables ξ and η, as follows from Eq. (9).

We explore the properties of spheroidal orbitals; forR> 0 they are hybrid

orbitals composed of spherical wave functions. An important result is that the

angular probability density depends on the distance from a nucleus to the

dummy center, and varies substantially with R. For given n and m, the orbital

most stretched toward the dummy center is an orbital with quasi-angular

nodes of maximum number, whereas the orbital most stretched in the oppo-

site direction is an orbital with quasi-radial nodes of maximum number. The

characteristic feature of Coulomb spheroidal functions is thus the develop-

ment of preferred directions around an atom, i.e., the bond directions. These

features reveal the great advantage of a Coulomb spheroidal basis over a

Coulomb spherical basis in calculations on diatomic molecules.
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Coulomb Sturmian functions defined in spherical polar coordinates have

long been used for diatomic-molecular calculations. Our work here pre-

sents, in a convenient form, Coulomb Sturmians defined in spheroidal coor-

dinates, and demonstrates the possibility of applying these functions for

molecular calculations. The obtained results show that, in comparison with

Coulomb Sturmians defined in spherical coordinates, the application of

Coulomb Sturmian functions derived in spheroidal coordinates substantially

speeds convergence and brings the calculated results nearer the exact ones.

We attribute this improvement to the fact that spheroidal Sturmians repro-

duce the behavior of one-electron diatomic-molecular orbitals better than

other amplitude functions of exponential type. An important fact is that

all relevant integrals are pure functions of parameter kR, in which k is the

exponent common to the basis functions and R is internuclear distance.

Moreover, the integrals can be calculated analytically once and for all, with

kR and nuclear charges Za and Zb as parameters. These advantages enable us

to state that Coulomb Sturmian functions defined in spheroidal coordinates

are the most appropriate basis functions for diatomic-molecular calculations.

The problem of a hydrogen-like ion is solved in prolate spheroidal coor-

dinates for the continuous spectrum. The one-dimensional equations

obtained after separation of the variables in the temporally independent

Schr€odinger equation are reduced to Heun’s confluent equations; the eigen-

values and eigenfunctions of these equations are found in a closed algebraic

form. For small distances R between the foci of spheroidal coordinates, the

real part of eigenvalues is a linearly decreasing function of R, which then

increases rapidly when R increases. The imaginary part of α is a linearly

decreasing or increasing function of R at all separations. As shown in

Section 3.1, expansion (26) converges rapidly for nonzero and finite R.

Expression (26) obtained for quasi-angular function Yk0mðηÞ is hence valid
for diverse distancesR between the foci of spheroidal coordinates. In expan-

sion (33) the convergence is less rapid, especially when R increases; expres-

sion (33) derived for quasi-radial function XEk0mðξÞ is consequently valid at

small R. When R> a0, the problem of finding spheroidal quasi-radial func-

tions corresponding to the continuous spectrum requires an alternative

treatment; work on this problem is in progress.

As mentioned in the introduction, one- and two-Coulomb-center prob-

lems in prolate spheroidal coordinates are mathematically similar. This fact

enables us to state that the approach elaborated in the present work for the

hydrogen-like ion might be efficiently employed for the algebraic solution

of the two-Coulomb-center problem for the continuous spectrum.
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APPENDIX A

The quadratic equation for h(R) is

h2�2ðm+1Þh� ZaR

n

	 
2

¼ 0: (A.1)

The cubic equation for h(R) has the form

hðh�2m�4Þðh�4m�6Þ� 2ZaR

n

	 
2

ðh�2m�2Þ¼ 0: (A.2)

This equation has the three real and distinct roots.

The equation of the fourth degree for h(R) has the form

ðh�6m�12Þ hðh�2m�6Þðh�4m�10Þ� ZaR

n

	 
2

ð7h�12m�18Þ
" #

�3
ZaR

n

	 
2

hðh�2m�2Þ+9
ZaR

n

	 
4

¼ 0:

(A.3)

This equation has the four real and distinct roots.

APPENDIX B

Spheroidal functions ψnξnηm
with arbitrary m and nξ, nη� 2 in terms of

spherical functions Ψnlm:

ψ00m ¼Ψm+1,m,m, (B.1)

ψ01m¼ 1+
nh1

ZaR

	 
2
" #�1

2 nh1

ZaR
Ψm+2,m,m +Ψm+2,m+1,m

� �
,

ψ10m¼ 1+
nh2

ZaR

	 
2
" #�1

2 nh2

ZaR
Ψm+2,m,m +Ψm+2,m+1,m

� �
,

(B.2)
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ψ02m¼C02m

ffiffiffiffiffiffiffiffiffiffiffi
m+2

m+1

r
h1

h1�4m�6
Ψm+3,m,m +

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
2m+3

m+1

r
nh1

2ZaR
Ψm+3,m+1,m

+Ψm+3,m+2,m�,

ψ11m¼C11m

ffiffiffiffiffiffiffiffiffiffiffi
m+2

m+1

r
h2

h2�4m�6
Ψm+3,m,m +

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
2m+3

m+1

r
nh2

2ZaR
Ψm+3,m+1,m

+Ψm+3,m+2,m�,

ψ20m¼C20m

ffiffiffiffiffiffiffiffiffiffiffi
m+2

m+1

r
h3

h3�4m�6
Ψm+3,m,m +

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
2m+3

m+1

r
nh3

2ZaR
Ψm+3,m+1,m

+Ψm+3,m+2,m�,
(B.3)

In (B.2), h1,h2 are the solutions of a quadratic equation and in (B.3),

h1,h2,h3 are the solutions of a cubic equation presented in Appendix A.

APPENDIX C

The explicit expressions of spheroidal Sturmian functions with arbi-

trary m and nξ, nη � 2:

ψ00m¼ e�
κR
2
ðξ+ ηÞ ðξ2�1Þð1�η2Þ� �m

2 e�imφ; (C.1)

ψ01m ¼ψ00m 1� ξ�1

2
d
ð1Þ
1 ðh1Þ

� �
1+

1+ η

2
d
ð2Þ
1 ðh1Þ

� �
,

ψ10m ¼ψ00m 1� ξ�1

2
d
ð1Þ
1 ðh2Þ

� �
1+

1+ η

2
d
ð2Þ
1 ðh2Þ

� �
,

(C.2)

in which d
ð1,2Þ
1 ðh1, 2Þ¼ ðm+1Þ�1

h1, 2�2ðm+1Þ� κR½ �, and h1, h2 are the

solutions of the quadratic equation h2 � 2(m + 1)h � (κR)2 ¼ 0;
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ψ02m ¼ψ00m 1� ξ�1

2
d
ð1Þ
1 ðh1Þ+ ξ�1

2

	 
2

d
ð1Þ
2 ðh1Þ

" #

1+
1+ η

2
d
ð2Þ
1 ðh1Þ+ 1+ η

2

	 
2

d
ð2Þ
2 ðh1Þ

" #
,

ψ11m ¼ψ00m 1� ξ�1

2
d
ð1Þ
1 ðh2Þ+ ξ�1

2

	 
2

d
ð1Þ
2 ðh2Þ

" #

1+
1+ η

2
d
ð2Þ
1 ðh2Þ+ 1+ η

2

	 
2

d
ð2Þ
2 ðh2Þ

" #
,

ψ20m ¼ψ00m 1� ξ�1

2
d
ð1Þ
1 ðh3Þ+ ξ�1

2

	 
2

d
ð1Þ
2 ðh3Þ

" #

1+
1+ η

2
d
ð2Þ
1 ðh3Þ+ 1+ η

2

	 
2

d
ð2Þ
2 ðh3Þ

" #
,

(C.3)

in which

d
ð1,2Þ
1 ðhiÞ¼ ðm+1Þ�1

hi�2ð2m+3Þ�2κR½ �,
d
ð2,1Þ
2 ðhiÞ¼ 2ðm+2Þ½ ��1

hi�2ðm+2Þð Þdð2,1Þ1 ðhiÞ�4κR
h i (C.4)

and h1, h2, h3 are the solutions of the cubic equation h(h� 2m� 4)(h� 4m�
6) � 4(κR)2(h � 2m � 2) ¼ 0.
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