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ABSTRACT
In the framework of a quasi-molecular approach, the formation of hydrogen atom in the pre-recombination period of evolution
of the Universe is analysed quantitatively. Calculations in an adiabatic multilevel representation enable estimates of probabilities
of radiative transitions. The quasi-molecular mechanism of recombination allows the formation of hydrogen molecular ion,
H2

+, in its ground state. The probability of this process is comparable with the probability of the creation of atomic hydrogen.
The participation of a second proton in the recombination increases the binding energy of an electron and decreases the rate of
recombination of hydrogen.

Key words: atomic processes – cosmic background radiation – early Universe.

1 IN T RO D U C T I O N

Cosmological recombination was responsible for the formation of
neutral hydrogen and helium atoms in the early Universe. For an
electron and a proton, the cosmological recombination was first
studied by Zel’dovich, Kurt & Syunyaev (1968) and slightly later
by Peebles (1968). Despite substantial progress achieved after these
pioneering works, there remain problems in understanding how the
details of recombination affect the cosmological parameters. The
present level of study of the problems can be found in review of Kurt
& Shakhvorostova (2014) and in references therein.

To explore the influence on the cosmological parameters, Liu et al.
(2019) and Chiang & Slosar (2018) varied physical and phenomeno-
logical parameters in a standard code to compute the recombination
history of the Universe. They found that a cosmological parameter,
the Hubble constant, is robust against perturbations of recombination
history, unless non-standard physics modifies the atomic constants
during the recombination epoch.

In our recent paper (Kereselidze, Noselidze & Ogilvie 2019b), a
quasi-molecular mechanism of recombination (QMR) was suggested
and applied to treat the formation of atomic hydrogen in the early
Universe. According to this QMR, in the pre-recombination period of
evolution of the Universe (a redshift z � 2000), when the temperature
and density of protons were higher than those of subsequently, the
recombination of an electron and a proton occurred in the presence of
the nearest neighbouring proton, which participated in the process.
An electron and two protons were considered to constitute quasi-
molecule H2

+ temporarily formed during a collision.

� E-mail: tamaz.kereselidze@tsu.ge

As an electron is much lighter than a proton, the velocity of an
electron substantially exceeds the velocity of a proton in the quasi-
molecule. This fact allows us to treat H2

+ on a basis of an adiabatic
representation. In this approximation, all characteristics of H2

+, such
as the electron binding energy, dipole strengths, quasi-molecular
energy terms, and profiles of spectral lines, depend upon the distance
R between protons.

According to the QMR, a free electron emits a photon and creates
H2

+ in a highly excited state. Free–bound radiative transitions occur
at distances between protons greater than the radius of the hydrogen
atom in a highly excited state. If H2

+ is formed in a repulsive state,
the system rapidly dissociates into an excited hydrogen atom and
a proton. The duration of dissociation is defined by the collision
period, which is about 10−11 s for highly excited states and decreases
to 10−14 s for the lowest states. From an excited state, H descends
to the state with principal quantum number n = 2. A radiative decay
from state 22P involving one photon or from state 22S involving two
photons then yields the hydrogen atom in its ground state.

If a quasi-molecule is formed in an attractive state, which can
bind the colliding particles, a direct formation of the hydrogen atom
is impossible. In this case, radiative transitions lead to a cascade
downwards to low-lying attractive or repulsive quasi-molecular
states. The QMR thus leads to a radiative transition of two types:
free–bound with a direct formation of the hydrogen atom in the highly
excited state, and free–bound with subsequent intermediate bound–
bound quasi-molecular transitions that end with the formation of H.

The main conclusion made by Kereselidze et al. (2019b) was
that the radiative transition of an electron to an excited attractive
state of H2

+ affects the probability of recombination; the QMR
should hence be included in a calculation of the cosmological
recombination radiation.
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The purpose of this paper is to describe quantitatively the non-
standard QMR. For this purpose, we implemented the appropriate
calculations and answer this question: Is the QMR significant for
a complete study of the cosmological recombination problem? The
treatment is performed in an adiabatic multilevel representation.

The paper is organized as follows: After stating our objective,
we analyse the behaviour of the energy terms of H2

+ in Section 2,
and evaluate radiative transition probabilities in Section 3. Using the
obtained equations, we perform the appropriate calculations in Sec-
tion 4, before a conclusion in Section 5. Unless otherwise indicated,
atomic units (e = me = � = 1) are used throughout the paper.

2 B E H AV I O U R O F QUA S I - M O L E C U L A R
E N E R G Y T E R M S

For our purpose, it is important to know the behaviour of the energy
terms of H2

+ at large distances R between protons. More precisely,
for the QMR the existence of energy terms that are attractive is
crucial, so that, accordingly, the colliding particles can bind during
a period greater than a collision interval.

At large R, the energy terms of H2
+ are representable as (Bates &

Reid 1968)

U
g,u
n1,n2,|m|(R) = − 1

2n2
+ 3n(n1 − n2)

2R2
+ O(R−3) ∓ �n1,n2,|m|(R).

(1)

Here, the first three terms define the long-range interaction between
the hydrogen atom and proton; the last term describes the exponen-
tially small exchange interaction between the particles and is defined
as (Komarov, Ponomarev & Slavyanov 1976)

�n1n2|m|(R) = (−1)|m|

n3n2!(n2 + |m|)!
(

2R

n

)n−n1+n2

· e− R
n −n

(
1 + O(R−1)

)
. (2)

In equations (1) and (2), n1, n2, and m are the parabolic quantum
numbers that specify electron states in the separate hydrogen atom;
the total quantum number n is related to n1, n2, and m with equation n
= n1 + n2 + |m| + 1. Quasi-molecular energy terms U

g,u
n1,n2,|m|(R) are

distinguished by parity, which is even (gerade) or odd (ungerade).
As is clear from equation (1), the energy term is attractive at large R
if n2 > n1. Among the terms with n1 = n2 and m = 0, the g term is
attractive and the u term is repulsive.

We proceed to investigate the behaviour of the energy terms of H2
+

in the entire region of internuclear distances R. To avoid cumbersome
calculations and at the same time to maintain generality, we restrict
the treatment to the lowest 30 quasi-molecular terms with m = 0 (σ
terms). These terms correlate with the levels of the hydrogen atom
with n = 1, 2, 3, 4, and 5 at R = ∞. The behaviour of the energy
terms is depicted in Fig. 1.

The quasi-molecular terms are specified with quantum numbers
n0 and l0 that, together with m, characterize an electron in the united
atom (R = 0). Parabolic quantum numbers n1 and n2 are related to
quantum numbers n0, l0, and m according to the molecular-orbital
correlation rules n1 = n0 − l0 − 1 and n2 = (l0 − |m|)/2 for g
orbitals and n2 = (l0 − |m| − 1)/2 for u orbitals (Bates & Reid 1968;
Kereselidze 1987).

3 RADIATIVE TRANSITION PRO BA BILIT I ES

In this section, we evaluate the probabilities for radiative transitions
involved in the QMR. Fig. 1 shows that, among the states under

Figure 1. σ energy terms of H+
2 as functions of distance R between protons,

with blue curves for attractive terms and red curves for repulsive terms.
Thin arrows indicate radiative transitions between attractive quasi-molecular
states; a0 = �

2/mee2 = 0.529 × 10−8 cm is the first Bohr radius of hydrogen
and ε0 = mee4/�2 = 27.21 eV. Energy terms (6fσ u, 5pσ u), (5fσ u, 3sσ g), and
(3pσ u, 2sσ g) are so close that they are indistinguishable in the figure.

consideration, the attractive ones are

1s, 3d, 4f, 5g, 6h, 4d, 7i, 8j,

6g, 7h, 9k, 10l, 8i, 9j, 7g, (3)
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Table 1. Equilibrium distances, R0, and energies of the lowest 16 electronic
states of H2

+ at R = R0; parabolic quantum numbers n1 and n2 and parity of
state are shown within parentheses.

State R0, a0 U(R0), ε0 State R0, a0 U(R0), ε0

1s (00g) 2.00 −0.6026 2p (00u) 12.546 − 0.500 061
3d (01g) 8.83 −0.1750 4f (01u) 20.92 − 0.1307
5g (02g) 23.90 −0.0782 6h (02u) 40.52 − 0.0606
4d (11g) 17.85 −0.0588 7i (03g) 47.36 − 0.0436
6g (12g) 33.64 −0.0379 8j (03u) 68.17 − 0.0352
7h (12u) 56.09 −0.0326 9k (04g) 79.23 − 0.0276
8i (13g) 59.68 −0.0255 10l (04u) 103.94 − 0.0230
9j (13u) 84.55 −0.0218 7g (22g) 49.31 − 0.0207

whereas the repulsive states are

2p, 2s, 3p, 5f, 3s, 4p, 5d, 6f,

4s, 5p, 8h, 6d, 7f, 5s, 6p. (4)

In equations (3) and (4), a symbol σ is omitted and states are arranged
in order of increasing energy at large R; the subscripts g and u are
also omitted because the parity of a state is uniquely defined with
quantum number l0.

Adjusting a harmonic oscillator potential to the attractive energy
term, one can readily show that each potential well depicted in Fig. 1
contains not less than 10 vibrational levels. For attractive states,
the equilibrium distances, R0, are presented in Table 1, with the
corresponding energy minima.

The lifetime of H2
+ in an excited electronic state, about 10−9 to

10−7 s, is much greater than the duration of a collision. Being formed
in an excited repulsive state, H2

+ dissociates immediately to proton
and hydrogen atom (direct channel to produce H in an excited state),
but if H2

+ is formed in an excited attractive state, there is a possibility
to descend to a lower lying quasi-molecular state (repulsive or at-
tractive) with a subsequent dissociation or cascade down. This effect
constitutes an indirect channel of producing H in an excited state.

In our treatment, we assume that H2
+ is created at a large distance

between protons in excited σ electronic states (thick arrow in Fig. 1).
There are five repulsive states – 5s, 6d, 8h, 7f, and 6p (not shown in
Fig. 1) – that correlate with states of the hydrogen atom with n =
5 at R = ∞. In these states, H2

+ rapidly dissociates into hydrogen
atom and proton. As for attractive states, being in states 7g and 8i
the quasi-molecules rapidly relax to the lowest vibrational level and
then descend to lower lying states according to the Franck–Condon
principle (vertical transitions). Transitions from remaining attractive
states 9j, 10l, and 9k are inhibited by the extremely small Franck–
Condon factors (their minima are located too far from the minima of
lower lying attractive states).

Taking into account that dipole transitions are allowed only be-
tween states of opposite parity, the problem reduces to the treatment
of the following transitions:

7g

8i

}
→ {6f, 5p, 5f, 4p, 3p, 2p (5)

for the direct channel and

7g

8i

}
→

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

7h → 7i → {5f, 4p, 3p, 2p

7h → 7i → 6h → 5g → {3p, 2p

7h → 7i → 6h → 5g → 4f → 3d → {2p

7h → {3s, 2s

7h → 7i → 6h → {2s

(6)

for the indirect channel.

3.1 Formation of the hydrogen atom

The total probability of the various processes is a sum of the proba-
bilities of the separate processes just as the duration of consecutive
processes is a sum of the separate periods. Taking that effect into
account and following equation (5), one can write for the probability
per unit time of a direct formation of atomic hydrogen in the ground
state from quasi-molecular states 7g and 8i that

Wdir = �(7g)Wdir(7g) + �(8i)Wdir(8i),

in which

Wdir(i) = ρ(i → 2p) + [
ρ−1(i → 6f) + W−1

∞ (6f)
]−1

+ [
ρ−1(i → 5p) + W−1

∞ (5p)
]−1

+ [
ρ−1(i → 5f) + W−1

∞ (5f)
]−1

+ [
ρ−1(i → 4p) + W−1

∞ (4p)
]−1

+ [
ρ−1(i → 3p) + W−1

∞ (3p)
]−1

. (7)

Here, �(i) is the probability that H2
+ is created in the state |i〉; ρ(i

→ j) is the probability per unit time of transition from |i〉 to |j〉
quasi-molecular state; W∞(i) is the probability per unit time of a
cascade downward to the ground state of H after the dissociation
of H2

+.
Following equation (6), one can write for the probability of an

indirect formation of atomic hydrogen in the ground state from quasi-
molecular states 7g and 8i that

Windir = �(7g)Windir(7g) + �(8i)Windir(8i),

in which

Windir(i) = [
ρ−1(i → 7h) + ρ−1(7h → 7i)

+ ρ−1(7i → 2p)
]−1 + [

ρ−1(i → 7h) + ρ−1(7h → 7i)

+ ρ−1(7i → 6h) + ρ−1(6h → 5g) + ρ−1(5g → 2p)
]−1

+ [
ρ−1(i → 7h) + ρ−1(7h → 7i) + ρ−1(7i → 6h)

+ ρ−1(6h → 5g) + ρ−1(5g → 4f) + ρ−1(4f → 3d)

+ ρ−1(3d → 2p)
]−1

. (8)

A sum of (7) and (8) defines the complete probability of the formation
of atomic hydrogen in the ground state. In the above equations,
non-adiabatic transitions between quasi-molecular states are entirely
ignored.

3.2 Formation of H2
+ in the ground state

Repulsive energy term 2p of H2
+ has a minimum at R = 12.546a0

(Landau & Lifshitz 1977). This minimum, which is due to van der
Waals forces, is much shallower than that of ground-state term 1s (see
Table 1). Adjusting a harmonic-oscillator potential to the numerical
data, one can find that the potential well contains one vibrational
level. Adjusting the Morse potential (Morse 1929) to the numerical
data leads, notably, to the same result. Hence, hereafter 2p might be
considered as an attractive state.

The existence of a bound state with equilibrium distance near R0

= 2.0a0 leads to a possibility of the formation of H2
+ in the ground

state. The complete probability per unit time of a transition from
states 7g and 8i to the ground state of H2

+ is

Wmol = �(7g)WH+
2

(7g) + �(8i)WH+
2

(8i),
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in which

WH+
2

(i) = {[
ρ(i → 2p) + (

ρ−1(i → 7h) + ρ−1(7h → 7i)

+ ρ−1(7i → 2p)
)−1 + (

ρ−1(i → 7h) + ρ−1(7h → 7i)

+ ρ−1(7i → 6h) + ρ−1(6h → 5g) + ρ−1(5g → 2p)
)−1

+ (
ρ−1(i → 7h) + ρ−1(7h → 7i)+ ρ−1(7i → 6h)

+ ρ−1(6h → 5g) + ρ−1(5g → 4f) + ρ−1(4f → 3d)

+ ρ−1(3d → 2p)
)−1

]−1
+ ρ−1(2p → 1s)

}−1

. (9)

There is thus an additional channel – a molecular channel that
leads to the formation of H2

+ in its ground state. This statement
becomes obvious when one takes into account that term 2p of H2

+

with m = 1 has a deep minimum at R = 7.93a0 (Bates & Reid 1968).
The probability of a transition from this state to the ground state is
hence substantial. An estimate of the contribution of π terms in the
formation of H2

+ in the ground state is a separate task, to be treated
in forthcoming work.

3.3 Influence on the ionization energy

We seek to show how a participation of a second proton in a
recombination alters the binding energy of an electron. At large
R, the electron energy reads

εn1n2|m|(R) = εn1n2|m|(∞) − 1

R
+ O(R−2), (10)

in which εn1n2|m|(∞) = −1/2n2 is the electron energy in the isolated
hydrogen atom.

Inserting into equation (10) the average distance between protons
during the pre-recombination period of evolution of the Universe,
which might be assumed to be R̄ = 2rn (Kereselidze et al. 2019b)
in which rn = 2n2 is the radius of the hydrogen atom in the excited
state, we obtain that

εn1n2|m|(R̄) = εn1n2|m|(∞) − 1

4n2
. (11)

Equation (11) shows that the participation of a second proton in the
process increases the binding energy of an electron. We thus obtain
that, in the perturbed hydrogen atom, a deviation of the ionization
energy from its value in unperturbed H attains 50 per cent.

4 R E S U LT S O F C A L C U L AT I O N S

We proceed to calculate the probabilities involved in equations (7)–
(9). The probability of bound–bound and bound-free radiative tran-
sitions in H2

+ is defined as (Heitler 1954)

ρ(i → f ) = 4w3
if

3c3

∣∣dif

∣∣2
. (12)

Here, wif is the frequency of an emitted photon, c is the speed of light,
and dif is the transition matrix element defined with wavefunctions
of H2

+.
In the adiabatic approximation, the wavefunctions of H2

+ are
representable as a product of two functions 	 = χψ , in which
ψ(�r, R) and χ ( �R) describe motion of an electron and protons,
respectively. Inserting 	 = χψ into the transition matrix element
and accounting that ψ depends smoothly on R, we obtain that

dif (R) = 〈
χf

∣∣ χi〉
〈
ψf

∣∣ z |ψi〉 . (13)

Table 2. Matrix elements of electric dipole strength at R =
R0 involving the lowest 10 electronic states of H2

+; R0 is the
equilibrium distance of the upper state.

Transition 〈f|z|i〉, a0 Transition 〈f|z|i〉, a0

7g → 2p − 0.003 8i → 2p 0.048
7g → 7h 3.031 8i → 7h 10.589
7h → 7i − 1.130 7i → 6h 6.503
6h → 5g − 9.673 5g → 4f 3.004
4f → 3d 6.924 5g → 2p − 0.287
3d → 2p 0.795 2p → 1s − 6.246

In equation (13), 〈ψ f|z|ψ i〉 is the electric dipole moment matrix
element; 〈χ f|χ i〉 is the vibrational overlap integral or the Franck–
Condon factor. For a transition from a bound to antibound state χ f

should be replaced in 〈χ f|χ i〉 with the appropriate wavefunction �f

describing nuclear motion in a repulsive field. Explicit expressions
for the Franck–Condon factor and overlap integral 〈�f|χ i〉 are
presented in Appendix A.

We first calculate the ratio

η(i) =
WH+

2
(i)

Wdir(i) + Windir(i)
(14)

for i = 3d, 5g, 7i, 8i, and 7g. This ratio does not depend on �(i) and
allows us to estimate relative contribution of the formation of H2

+

in its ground state in recombination.
In H2

+, the transition probabilities between two attractive states are
values of the order of 10−10–10−14 (per atomic unit of time), whereas
the transition probabilities from attractive to repulsive states 6f, 5p,
5f, 4p, and 3p are much smaller. Neglecting small terms, we thereby
simplify η(i). The appropriate expressions are presented in Appendix
B.

Matrix elements of the electric dipole strength corresponding to the
transitions involved in equations (B1)–(B4) are collected in Table 2.
For the lowest four states, the data are taken from paper of Ramaker
& Peek (1973); for the highly excited states, matrix elements are
calculated with an algorithm developed by Devdariani et al. (2005),
and employing asymptotic wavefunctions for H2

+ (Kereselidze,
Noselidze & Chibisov 2003).

Using equations (B1)–(B4), we calculated η(i) and obtained that
η(3d) = 2.5 × 10−5, η(5g) = 5.1 × 10−1, η(7i) = 5.3 × 10−1,
and η(7g) = η(8i) = 5.4 × 10−1. This quantitative analysis thus
revealed that, apart from η(3d), which is a small value, all other η(i)
are values of order unity and are nearly equal. These obtained results
clearly show that the formation of H2

+ in the ground state introduces
an important contribution, together with formation of H(1S), to the
recombination.

We proceed to calculate the probabilities of the initial free–bound
transitions as a function of a redshift. In its general consideration,
this task is complicated. A simplification becomes achievable on
assuming that protons are located on the axis z and a colliding
electron moves parallel to this axis. According to this approximation,
one can calculate the transition probability using the two-Coulomb-
centre wavefunctions corresponding to the continuous spectrum
(Kereselidze, Noselidze & Devdariani 2019a) and discrete spectrum
(Kereselidze et al. 2003); in the general case, the wavefunction of a
colliding electron is a linear combination of the two-Coulomb-centre
wavefunctions. The appropriate electric-dipole-strength matrix ele-
ments are derived in Appendix C. Equation (12) with these matrix
elements allows us to estimate �(7g) and �(8i) at varied z. The
results of calculations are depicted in Fig. 2.
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Figure 2. Probabilities �(i) as functions of a redshift z; red curves – influence
of a neighbouring proton is neglected (R = ∞ in equation C5); blue curves –
influence of a neighbouring proton is taken into account (R < ∞ in equation
C5). Curves 1 and 2 correspond to probabilities �(7g) and �(8i), respectively.

Figure 3. Ratios τ (i) as functions of redshift z; red curve – τ (7g) and blue
curve – τ (8i).

Fig. 2 shows that the free–bound transition probabilities with and
without inclusion of the corrections, arising because of the existence
of a second proton, coincide completely for z < 2000, and differ
negligibly for 2000 < z < 3000 but differ perceptibly for 3000 < z

< 5000. The transition probability �(8i) into the state with parabolic
quantum numbers n1 = 1, n2 = 3 is larger than transition probability
�(7g) into the state with n1 = n2 = 2. This difference results from
the well-known fact that wavefunctions of the hydrogen atom in
parabolic coordinates are symmetric about plane z = 0 when n1 =
n2, but not symmetric when n1 	= n2 (Landau & Lifshitz 1977). As
a result, transition matrix element zif with n1 	= n2 is larger than zif

with n1 = n2.
Fig. 3 shows the ratio τ (i) = [�

′
(i) − �(i)]/�(i) as a function

of redshift z. Here, �
′
(i) and �(i) are calculated with and without

the inclusion of the second term in equation (C5). The calculation
revealed that τ (7g) = 3.7 × 10−8 at z = 2000, τ (7g) = 4.2 × 10−5 at
z = 3000, τ (7g) = 1.4 × 10−3 at z = 4000, and τ (7g) = 1.2 × 10−2

at z = 5000. For free–bound transitions into the state with n1 = 1, n2

= 3, these probabilities are τ (8i) = 8.3 × 10−5 at z = 2000, τ (8i) =
2.6 × 10−3 at z = 3000, τ (8i) = 1.5 × 10−2 at z = 4000, and τ (7g)
= 4.8 × 10−2 at z = 5000.

Multiplying �(i) and bound–bound transition probabilities defined
by equations (7)–(9), one thereby obtains the absolute values of
the recombination probability, W(i). Bound–bound transition prob-
abilities do not depend on a redshift. Therefore, the dependence
of W(i) on z is fully defined by the initial free–bound transition
probability.

5 C O N C L U S I O N S

In this work, we have analysed quantitatively the recombination
of an electron and a proton when the nearest neighbouring proton
participates in the process. The system of colliding particles is
considered as a quasi-molecule, H2

+, temporarily formed during
a collision. This analysis has been implemented in an adiabatic
approximation, in which the lowest 30 electronic states of H2

+ with
m = 0 (σ states) were involved. The presence of another proton
reduces the symmetry of a field experienced by an electron from
spherical to axial. This reduction of symmetry leads in turn to the
radiative transitions that are forbidden in the recombination of an
electron on an isolated proton.

In the developed scheme of calculation, our inclusion of higher
electronic states leads to no qualitative new and formidable problem
– it only complicates the treatment. We hence expect that η(i)
calculated for higher quasi-molecular states will be near obtained for
states of the present large number, even though finite. Our expectation
is based on the fact that the Franck–Condon factors decrease rapidly
for highly excited attractive states as the locations of the energy
minima are shifted towards large internuclear distances; accordingly,
the participation of highly excited quasi-molecular states in the
recombination declines.

The main results obtained in this work are that the QMR allows
the formation of H2

+ in its ground state and that the probability of
this process is comparable with the probability of the formation of
atomic hydrogen. Another important result is that the participation
of a second proton in the process increases the binding energy
of an electron. That in turn leads to increasing of z at which the
recombination of hydrogen starts. We thus obtained that the quasi-
molecular treatment reduces the rate of recombination of hydrogen
and it shifts beginning of the stage of the standard recombination
towards earlier period.

An inspection of η(i) shows that an inclusion of a molecular
channel in the recombination accelerates the loss of free protons
about 1.5 times but maintains an unchanged rate of disappearance
of free electrons. Hence, conclusions made by previous authors
concerning the fraction of free electrons in the recombination period
(see e.g. Glover et al. 2014) remain valid.

The presence of a second proton leads to the splitting of the
hydrogen atom level with n � 1 and m = 0 into n levels and to
the formation of H2

+ in highly excited σ states. Among these states,
half is repulsive and another half is attractive. In a repulsive state,
H2

+ rapidly dissociates into an excited hydrogen atom and a proton.
In an attractive state, H2

+ relaxes to the lowest vibrational level
and then descends to lower lying quasi-molecular states according
to the Franck–Condon principle. This process terminates with the
formation of H or H2

+ in the ground state. At large R, i.e. when R
∼ 2n2 � 1, the attractive potential is a value of the order of n−2

according to equation (1). Taking into account that n ∼ 102 at z

= 2500, one can assume that the formation of H2
+ was efficient

in the pre-recombination as well as in the recombination period of
evolution of the Universe. We emphasize that our inclusion of the
QMR in the calculations increases the initial free–bound transition
probabilities, especially for z > 3000.

In the pre-recombination period of evolution of the Universe,
the primordial plasma was thus composed of neutral hydrogen and
helium atoms, hydrogen molecular ions H2

+, protons, and electrons,
all exposed to the radiative field. Ions H2

+ formed in the ground
state were destructed through photoionization, photoexcitation in the
repulsive quasi-molecular state, or a collision with other particles.
This statement becomes evident by exploring the abundance of H2

+
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in the recombination stage of evolution of the Universe (Lepp,
Stancil & Dalgarno 2002; Coppola et al. 2011; Galli & Palla
2013). We recognize that estimating the process of formation of
H2

+ is insufficient and the destruction processes must also be
studied. The consideration of the destruction processes is a separate
and complicated problem, which will be treated in a forthcoming
investigation.

The quantitative analysis that we have performed confirms that the
QMR plays an important role, and, accordingly, must be taken into
account for a complete treatment of the cosmological recombination.
As a possible significant outcome, we note that the inclusion of
the quasi-molecular correction in the cosmological recombination
can increase the Hubble constant estimated from analysis of the
cosmic microwave background data and, accordingly, decrease
the tension with local measurements (Beradze & Gogberashvili
2019).

In conclusion, we emphasize that our work does not solve
completely the problem of the formation of hydrogen in the early
Universe; rather, it is one step towards the solution of that problem.
The next step is the calculation of matrix elements for the initial
free–bound transitions using the precise two-Coulomb-centre wave-
functions defined for the continuous and discrete spectra (in this
work, only an estimate of these matrix elements was undertaken).
A knowledge of these data allows us to calculate precisely the
populations of quasi-molecular states and thereby to determine the
absolute values of probabilities of the formation of H and H2

+ in the
pre-recombination stage.
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APPENDI X A

For two harmonic oscillators with disparate both equilibrium position
and vibrational frequency, the Franck–Condon factor is expressible
as (Chang 2005)

〈χν | χν′ 〉 =
(

Ae−s

2ν+ν′
ν!ν ′!

)1/2 ν∑
k=0

ν′∑
k′=0

(
ν

k

)(
ν ′

k′

)
Hν−k(b)

Hν′−k′ (b′)
(
2
√

α
)k
(

2
√

α′
)k′

I (K), (A1)

in which Hermite polynomial Hν(x) corresponds to vibrational state
χν , A = 2

√
αα′/(α + α′), s = αα

′
d2/(α + α

′
), b = −α′√αd/(α +

α′), and b′ = α
√

α′d/(α + α′) in which α = ω/�, α
′ = ω

′
/�, d is

the displacement between the two oscillators, and ω is the angular
frequency of the oscillator; I(K) = 0 for k + k

′
odd; I(K) = (2K −

1)!!/(α + α
′
)K for k + k

′
even.

The wavefunction describing nuclear motion in a repulsive field
that is defined with the first two terms in equation (1) reads

�f (R) = Cκ (κR)−1/2J√
γ+1/4(κR), (A2)

in which J√
γ+1/4(κR) is a Bessel function of the first kind, κ2 =

2μ[Ui(R0) + 1/(2n2)], γ = 3μn(n1 − n2), μ is the reduced mass
of two protons, and Cκ is a normalizing factor. A nuclear rotational
motion is ignored in the derivation of equation (A2).

For a transition from an attractive electronic state with vibrational
quantum number ν = 0 to a repulsive state, the overlap integral is
defined as

〈
�f

∣∣ χi〉 =
∞∫

0

�f (R)χ0(R)dR, (A3)

in which

χ0(R) = C0e− αμ(R−R0)2

2 (A4)

and C0 = (αμ/π )1/4 is the normalizing factor.

APPENDI X B

Here are presented the simplified expressions: for η(3d)

η(3d) = ρ(2p → 1s){ρ(3d → 2p) + ρ(2p → 1s)}−1, (B1)

for η(5g)

η(5g) = A(5g)ρ(2p → 1s) {ρ(5g → 4f)

× ρ(4f → 3d)ρ(3d → 2p) + A(5g)

× [
ρ(5g → 2p) + ρ(2p → 1s)

]}−1
, (B2)
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in which

A(5g) = ρ(5g → 4f)ρ(4f → 3d)

+ [
ρ(5g → 4f) + ρ(4f → 3d)

]
ρ(3d → 2p),

for η(7i)

η(7i) = A(7i)B(7i)ρ(2p → 1s) {ρ(7i → 6h)

× ρ(6h → 5g)
[
A(7i)ρ(5g → 4f)ρ(4f → 3d)

× ρ(3d → 2p) + B(7i)ρ(5g → 2p)
] + A(7i)B(7i)

× ρ(2p → 1s)}−1, (B3)

in which

A(7i) = ρ(7i → 6h)ρ(6h → 5g) + ρ(5g → 2p)

× [
ρ(7i → 6h) + ρ(6h → 5g)

]
,

B(7i) = ρ(7i → 6h)ρ(6h → 5g)ρ(5g → 4f)

× ρ(4f → 3d) + ρ(3d → 2p)
[
ρ(6h → 5g)

× ρ(5g → 4f)ρ(4f → 3d) + ρ(7i → 6h)

× ρ(5g → 4f)ρ(4f → 3d) + ρ(7i → 6h)

× ρ(6h → 5g)ρ(4f → 3d) + ρ(7i → 6h)

× ρ(6h → 5g)ρ(5g → 4f)
]
.

and for η(i) (i = 7g, i = 8i)

η(i) = A′(i)B ′(i)C ′(i)ρ(2p → 1s)
{
A(i)B ′(i)C ′(i)

+A′(i)B(i)C ′(i) + A′(i)B ′(i)C(i)

+ A′(i)B ′(i)C ′(i)ρ(2p → 1s)
}−1

, (B4)

in which

A(i) = ρ(i → 7h)ρ(7h → 7i)ρ(7i → 2p),

B(i) = ρ(i → 7h)ρ(7h → 7i)ρ(7i → 6h)

× ρ(6h → 5g)ρ(5g → 2p),

C(i) = ρ(7g → 7h)ρ(7h → 7i)ρ(7i → 6h)ρ(6h → 5g)

× ρ(5g → 4f)ρ(4f → 3d)ρ(3d → 2p),

A′(i) = ρ(i → 7h)ρ(7h → 7i) + [ρ(i → 7h)

+ ρ(7h → 7i)]ρ(7i → 2p),

B ′(i) = ρ(i → 7h)ρ(7h → 7i)ρ(7i → 6h)ρ(6h → 5g)

+ [ρ(i → 7h)ρ(7h → 7i)ρ(7i → 6h)

+ ρ(i → 7h)ρ(7h → 7i)

× ρ(6h → 5g) + ρ(i → 7h)ρ(7i → 6h)ρ(6h → 5g)

+ ρ(7h → 7i)ρ(7i → 6h)ρ(6h → 5g)]ρ(5g → 2p).

C ′ = ρ(7g → 7h)ρ(7h → 7i)ρ(7i → 6h)ρ(6h → 5g)

× ρ(5g → 4f)[ρ(4f → 3d) + ρ(3d → 2p)] + ρ(7g → 7h)

× ρ(7h → 7i)ρ(7i → 6h)ρ(4f → 3d)[ρ(6h → 5g)

+ ρ(5g → 4f)] × ρ(3d → 2p) + ρ(7g → 7h)[ρ(7h → 7i)

+ ρ(7i → 6h)]ρ(6h → 5g) × ρ(5g → 4f)ρ(4f → 3d)

× ρ(3d → 2p) + ρ(7h → 7i)ρ(7i → 6h)

× ρ(6h → 5g)ρ(5g → 4f)ρ(4f → 3d)ρ(3d → 2p).

APPENDI X C

At large distance R between protons, the wavefunction of a colliding
electron is representable as

	i = 1√
2

(ψa − ψb), (C1)

in which ψa and ψb are wavefunctions describing the motion of an
electron in the Coulomb field of protons at the left a and right b,
respectively.

If protons are located on the axis z with coordinates za = −R/2,
zb = R/2 and a colliding electron is moving parallel to the axis z

with momentum p, wavefunctions ψa and ψb can be represented
as a product of Coulomb spheroidal quasi-radial and quasi-angular
functions corresponding to the continuous spectrum. Expanding
spheroidal functions in powers of small values μa, b/R and νa, b/R,
in which μa, νa and μb, νb are parabolic coordinates centred on
protons a and b, respectively, we obtain, within the accuracy of the
main term, that

	i = Ci√
2

[(
e−i

p
2 (μa−νa ) − e−i

p
2 (νb−μb)

)
+ O(R−1)

]
. (C2)

In equation (C2), Ci = (2π )−1/2 is a normalizing factor.
At R � 2n2, wavefunctions of quasi-molecule H2

+ with parabolic
quantum numbers n1, n2 ≤ 4 and m = 0 (n = n1 + n2 + m + 1) are
representable as

ψf = Cf√
2

[
fn1 (μa)fn2 (νa) + fn1 (μb)fn2 (νb)

]
,

fn1,2 (x) = f (0)
n1,2

(x) ± 1

2R
f (1)

n1,2
(x) + O(R−2), (C3)

in which

f (0)
n1,2

(x) = e− x
2n F

(
−n1,2, 1,

x

n

)
,

f (1)
n1,2

(x) = e− x
2n x×

[
n2,1F

(
−n1,2, 1,

x

n

)

− (2n2,1 + 1)

(
dF (−n1,2, 1, t)

dt

)
t= x

n

]
, (C4)

where F(−n1, 2, 1, x/n) is a confluent hypergeometric function and
Cf is a normalizing factor.

Employing the derived wavefunctions, we obtain for the free–
bound transition matrix elements u → g that

zif = z
(0)
if − 1

2R
z

(1)
if + O(R−2), (C5)
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in which

z
(0)
if = C

∫ μmax

0

∫ νmax

0
e−i

p
2 (μ−ν)f (0)

n1
(μ)f (0)

n2
(ν)(μ2 − ν2) dμ dν,

z
(1)
if = C

∫ μmax

0

∫ νmax

0
e−i

p
2 (μ−ν)

× [
f (0)

n1
(μ)f (1)

n2
(ν) − f (1)

n1
(μ)f (0)

n2
(ν)

]
(μ2 − ν2) dμ dν, (C6)

where μmax, νmax � 2n2 and C = (π /32)1/2Cf. In equa-
tion (C6), parabolic coordinates might be centred on either of
protons.
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