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In Part II of a three-part series, we discuss two factors absent from textbooks of general chemistry that are important in a discussion 
of teaching orbitals. First, atomic orbitals are shown systematically to comprise algebraic formulae in coordinates of not one but four 
sets (spherical polar, paraboloidal, ellipsoidal, spheroconical coordinates). Each formula has its corresponding shape as a surface 
of constant amplitude; some visual examples are provided. Second, the argument that molecular structure is incompatible with 
quantum mechanics is presented. Despite the utility of orbitals as mathematical functions in various calculations, they are intrinsically 
complicated for the traditional purpose of qualitative explanation of molecular structure.
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INTRODUCTION 

Science is concerned only with observable things. – P. A. 
M. Dirac1

From Part I we recall a definition of an orbital according to 
a reputable textbook2 for general chemistry: “the solutions to 
Schroedinger’s equation for the hydrogen atom yield a set of wave 
functions called orbitals”. That definition is generally acceptable 
and approximately correct: the solutions number four sets3 rather 
than one. Moreover, according to Schroedinger,4 these functions 
in any set independent of time are named amplitude functions, not 
wave functions, to which usage we accordingly conform. Here in 
Part II we present explicitly these orbitals as algebraic formulae 
in four sets as an unequivocal proof of their reality as equivalent 
mathematical entities, and discuss the relevance of this multiplicity 
in the light of quantum-mechanical principles. A general expression 
for the orbitals according to the spatial coordinates of four systems 
in which they have been derived is accompanied in each case with 
an explicit single instance of an actual algebraic formula and its 
depiction as a surface of constant amplitude. We make no apology 
for presenting here extensive algebraic formulae – orbitals are 
neither more than, nor less than, mathematical functions, so not 
observable properties; each chemist must become reconciled to 
this fact of science.

We show below that most confusion about orbitals is based 
on an enduring misconception that quantum mechanics provides a 
mathematically unique representation. In systems of two or more 
electrons, the orbital configurations cannot be considered to be 
unique;5 the same condition is true of atomic orbitals derived for a 
one-electron system, as we show here. In 1983 McKelvey asserted 
prophetically that some organic chemists would be upset to learn 
that aspects of Dirac’s relativistic quantum mechanics – quantum 
numbers, representation of orbitals, absence of nodes – fail to exhibit 
a correlation one to one with non-relativistic quantum mechanics.6 

How do chemists feel when they realize that, even according to 
Schroedinger’s wave mechanics in coordinate space, there are four 
variations on a theme of orbitals, as we proceed to demonstrate? More 
importantly, what is the consequence of teaching this increasingly 
complicated subject to first-year students?

DISCUSSION

Systems of coordinates and exemplary orbitals

In coordinates as spatial variables in exactly four systems,3 
Schroedinger’s partial-differential equation independent of time for 
the hydrogen atom becomes separable into three ordinary-differential 
equations that have unique solutions in well-defined and explicit 
standard algebraic formulae, as follows.

Spherical polar coordinates
The coordinates in this system,7 the only system known to almost 

all chemists, are conventionally named r, q, f; a surface of constant r 
corresponds in Cartesian coordinates to a finite sphere of that radius 
with its center at the origin of the coordinate system; a surface of 
constant q corresponds to an infinite cone of circular cross section 
about axis z with angle q from that axis and its vertex at the origin; 
a surface of constant f corresponds to an infinite half-plane from 
axis z. These features are illustrated in Figure 1. Please be aware 
that, although one can directly undertake mathematical operations 
in various systems of coordinates, all pictorial representations must 
appear in Cartesian coordinates with which human eyes are familiar; 
advanced mathematical software (Maple for our work) readily fulfills 
these requirements. On this basis all our plots of orbitals are directly 
comparable.

The solutions yk,l,m(r,q,f) to the Schroedinger equation 
independent of time in these spherical polar coordinates, i.e. the 
orbitals, are expressible as 

ORBITALS IN GENERAL CHEMISTRY, PART II: MATHEMATICAL REALITIES

Guy Lamoureuxa,b,*,  and John F. Ogilviea,c,d

aUniversidad de Costa Rica, Escuela de Química, 11501-2060 San Pedro de Montes de Oca, San José, Costa Rica
bCentro de Investigaciones en Productos Naturales, 11501-2060 San Pedro de Montes de Oca, San José, Costa Rica
cCentre for Experimental and Constructive Mathematics, Department of Mathematics, Simon Fraser University, 8888 University 
Drive, Burnaby, British Columbia V5A 1S6 Canada
dInstitute of Quantum Physics, Irkutsk National Research Technical University, 83 Lermontov Street, Irkutsk 664074, Russian 
Federation

Ed
uc

aç
ão

https://orcid.org/0000-0002-2717-7506


Orbitals in general chemistry, part II: mathematical realities 349Vol. 44, No. 3

In this equation that is deliberately expressed in terms of 
fundamental physical constants appear as parameters quantum 
numbers radial k, as first argument of generalized Laguerre functions 
denoted LaguerreL with coordinate r, azimuthal l as first argument of 
associated Legendre functions of the first kind and denoted LegendreP 
with coordinate q, and equatorial m that is coefficient of equatorial 
angle f and i = √-1 in an exponential function. Other symbols are 
atomic number Z, reduced mass m = me mp /(me + mp) of the atomic 
system for which Z = 1 for H with a proton of mass mp as atomic 
nucleus, electric charge −e for an electron of mass me, Planck constant 
h and electric permittivity e0 of vacuum. In terms of quantum numbers 
specific for this coordinate system, energy quantum number n from 
experiment is equal to k + l + 1. These quantum numbers k,l,m that 
arise directly in the solution of the Schroedinger equation in spherical 
polar coordinates are natural descriptors for this system because they 
specify the number of nodal surfaces associated with each respective 
coordinate r,q,f.

As that equation for an amplitude function as orbital comprises 
three independent variables as coordinates r, q, f, and one dependent 
variable as amplitude y, a plot of such a function would require four 
spatial dimensions, which is impracticable. We hence show a surface 
of constant y at a value chosen to reveal the essential geometric 
features; the value of y is explicitly chosen, here and below, such 
that the surface of y2 at that value would contain about 0.99 of the 
total electronic charge density. For quantum numbers k = 0, l = 1,  
m = 0, so n = 2, the amplitude function (commonly known as 
orbital 2p) has this explicit algebraic form in terms of fundamental 
parameters:

A plot of the surface of this amplitude function or orbital, 
according to the stated criterion, appears in Figure 2. The surface 
comprises two separate hemispheres, of opposite phase on either 
side of plane xy for which z = 0, and with rounded edges; the 
overall nearly spherical shape is consistent with the fact that the 
Coulombic attraction between an electron and a proton has no angular 
dependence.

Paraboloidal Coordinates
The spatial variables in this system8 are conventionally named 

u, v and f: a surface of constant u corresponds to an infinite 
paraboloid, which is a parabola of revolution about axis z, opening 
downward and with its focus at the origin; a surface of constant v 
corresponds to an infinite paraboloid about axis z opening upward 
and with its focus also at the origin; a surface of constant f again 
corresponds to an infinite half-plane from axis z. Figure 3 illustrates  
these features.

Solutions  to the Schroedinger equation 
independent of time in these paraboloidal coordinates, i.e. the orbitals, 
are expressible in terms of fundamental physical constants as 

In this equation appear quantum numbers n1, as first argument 
of a generalized Laguerre function denoted LaguerreL of which 
the spatial variable is u, n2 as first argument of a generalized 
Laguerre function of which the spatial variable is v, and equatorial 

Figure 1. Definition of spherical polar coordinates: a sphere (red) of radius 
r = 1 unit with its center at the origin cut open to show the interior; a circular 
cone (blue) of constant q at angle p/6 rad to axis z and with its vertex at the 
origin, also cut open; a half-plane (green) of constant f is at angle 3p/5 rad 
to plane xz for which y = 0. The domains are 0 ≤ r < ∞, 0 ≤ q < p, 0 ≤ f < 2p

Figure 2. Surface of y0,1,0(r,q,f) = ±3.17×1012 m−3/2; the upper lobe (red) has a 
positive phase, the lower lobe (blue) has a negative phase. The length scale on 
each axis is in terms of metre consistent with the SI units of the plotted function
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m that is again coefficient of equatorial angle f and √-1 in an 
exponential function. Experimental energy quantum number  
n = n1 + n2 + |m| + 1, in terms of quantum numbers specific for 
this coordinate system. With the same criterion as for y0,1,0(r,q,f) 
in Figure 2, we show a surface of constant y0,1,0(u,v,f) at a value 
chosen to reveal the essential geometric features. For quantum 
numbers n1 = 0, n2 = 1, m = 0, so that energy quantum number n = 2, 
the amplitude function has this explicit algebraic form in terms of 
fundamental parameters:

A plot of the surface of this amplitude function. which is an 
orbital, according to the stated criterion, appears in Figure 4. The 
surface comprises two lobes, the upper one small, nearly ellipsoidal 
and of negative phase about axis z, the lower one large and of positive 
phase.

Ellipsoidal Coordinates
The coordinates in this system,9 also called prolate spheroidal, 

are conventionally named x, h, f: a surface of x = 2 corresponds to 
a finite ellipsoid, which is an ellipse of revolution about axis z, with 
one focus at the origin and a second focus at z = 2; for x = 1 such 
an ellipsoid degenerates into a line along axis z from z = 0 to z = 2; 
for x = a > 1, the ellipsoid has axis z as its major axis and extends 
from −a to a + 2 along that axis. A surface of constant h is an infinite 
hyperboloid coincident with axis −z for h = −1 and its vertex at the 
origin, coincident with axis +z for h = +1 and with its vertex at z = 2, 
and degenerating into a plane at z = 1 for h = 0; a surface of constant 
f again corresponds to an infinite half-plane from axis z. Figure 5 
illustrates these features.

The solutions yn,l,m(x,h,f) of the Schroedinger equation 
independent of time in these ellipsoidal coordinates, i.e. the orbitals, 
are expressible as

In this equation that is expressed in terms of am, which signifies 
a Bohr radius a0 corrected for the reduced mass of the system,  
am = e0 h2/(p m Z e2) with am = me a0/m for effective reduced mass m of 
the atomic system, appear normalizing factor N and quantum numbers 
n, l and equatorial m that is again coefficient of equatorial angle f and 

Figure 3. Definition of paraboloidal coordinates: a paraboloid (red) for u = 1 
unit with its focus at the origin and opening downward, cut open to show the 
interior; a paraboloid (blue) for v = 1 unit with its focus at the origin and 
opening upward, likewise cut open; a half-plane (green) for f = 0 is, accor-
dingly, in plane xz for which y = 0. The domains are 0 ≤ u,v < ∞, 0 ≤ f < 2p

Figure 5. Definition of ellipsoidal coordinates: surfaces of an ellipsoid (red) 
with x = 2, an hyperboloid (blue) with h = p/4 rad, both cut open to reveal the 
inner details, and a half-plane (green) with f = p/3 rad. The axes are scaled 
in unit am, which signifies a Bohr radius corrected for reduced mass µ of the 
system. The domains are 1 ≤ x < ∞, -1 ≤ h ≤ 1, 0 ≤ f < 2p

Figure 4. Surface of y0,1,0(u,v,f) = ±1.46×1013 m−3/2; the lower lobe (yellow) 
has a positive phase, the upper lobe (brown) negative phase; both are cut 
open to reveal the details of the surfaces. The length scale on each axis is in 
terms of metres consistent with SI units of the plotted function
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i = √-1 in an exponential function; the distance between the two foci 
of the ellipsoid is given symbol d, and all amplitude functions depend 
sensitively on the value of this parameter. Because Schroedinger’s 
equation in these coordinates is a special case of Heun’s differential 
equation, confluent functions HeunC naturally appear in the solutions; 
there is no singularity of these functions within the defined domains 
in the caption of Figure 5. In this formula energy quantum number n 
appears directly, but, in an alternative and partial solution in terms of 
variables x and h in separate series,10 n = nx + nh + |m| + 1.

For quantum numbers n = 2, l = 0, m = 0, the amplitude function 
or orbital has this explicit algebraic form in terms of Bohr radius am:

According to the same criterion as for y0,1,0(r,q,f) in Figure 2, we 
show in Figure 6 a surface of this amplitude function y2,0,0(x,h,f), at 
a value of d chosen to reveal the essential geometric features. The 
surface comprises two lobes, a small lobe nearly ellipsoidal and of 
negative phase along axis z, and a large lobe of positive phase. At 
distances d < am/10, the inner lobe begins as a sphere with its center 
at the origin (not shown) inside a concentric shell of amplitude of 
opposite phase; with increasing d the lobe assumes an ellipsoidal 
shape and moves upward along positive axis z and eventually separates 
from the large lobe as in Figure 4.

Spheroconical Coordinates
The coordinates in this system,11 also called spheroconal, are 

conventionally named x,r,h: a surface of constant r corresponds 
to a finite sphere of that radius, as in spherical polar coordinates; a 

surface of constant x corresponds to an infinite double cone with its 
apices at the origin and oriented about axis z, whereas a surface of 
constant h corresponds to an infinite double cone with its apices at the 
origin and oriented about axis x. Each double cone has an elliptical 
cross section in any plane perpendicular to its axis. These features 
are illustrated in Figure 7.

The solutions yk,l,k(x,r,h) to the Schroedinger equation 
independent of time in these spheroconical coordinates, i.e. the 
orbitals, are expressible as

In this formula appear normalizing factor N and three quantum 
numbers, k and l that appear in associated Laguerre functions as 
for spherical polar coordinates, and k that appears only in the two 
general Heun functions with l; the latter functions arise because 
the ordinary-differential equations for x and h, after separation of 
the variables in Schroedinger’s partial-differential equation in this 
system of coordinates, are instances of Heun’s differential equation. 
Energy quantum number n = k + l + 1, in terms of quantum numbers 
specific for this coordinate system, so is independent of third quantum 
number k. The most notable property of these amplitude functions 
in spheroconical coordinates is that, with N real, these orbitals 
have no complex character: there is no factor eimf in any amplitude 
function that might bestow some imaginary component, unlike the 
functions in coordinates of the preceding three sets. This property 
warrants an expanded utilization of these functions, but calculations 
with conventional quantum-chemical software involve no imaginary 
quantities in any case.

For quantum numbers n = 1, l = 0, k = 1, the amplitude function 

Figure 6. Surface of y2,0,0(x,h,f) = ±2.13×10−4 am
−3/2 at d = 5 am; the small 

lobe (light blue) of nearly ellipsoidal shape has a negative phase, the large 
lobe (coral) has a positive phase; both are cut open to reveal the inner details. 
The axes are scaled in unit am

Figure 7. Definition of spheroconical coordinates: surfaces of a sphere (green) 
centered at the origin with r = 2/5 units, an infinite double cone (red) of 
elliptical cross section about axis z with x = ¼, and a second infinite double 
cone (blue) of elliptical cross section about axis x with h = ¼. The domains 
are 0 ≤ r < ∞, -1/√2 ≤ x,h ≤ +1/√2



Lamoureux and Ogilvie352 Quim. Nova

has this explicit algebraic form in terms of Bohr radius am, as above, 
with an explicit numerically derived normalizing factor.

With the same criterion as for y0,1,0(r,q,f) in Figure 2, Figure 8 
shows a surface of this amplitude function y0,0,1(x,r,h), according to 
the stated common criterion, to reveal the essential geometric features 
of this orbital. The surface comprises two lobes, one a closed double 
conical lobe about axis x on either side of the origin with both apices 
at the origin, and the other a large torus of elliptical shape about that 
axis x and hence surrounding the cones near the origin.

Summary of coordinate systems

The impact of these eight figures on a reader should be that 
solutions to the Schroedinger equation for the hydrogen atom, and 
hence orbitals by definition, exist for coordinates in four distinct 
and independent sets. Each respective set of corresponding orbitals 
has its intrinsic three quantum numbers, not all common; surfaces 
of constant amplitude y have disparate shapes. There is no one and 
unique set of orbitals for the hydrogen atom, and so there is no one 
and unique set of their quantum numbers. Many further pictures of 
surfaces of amplitude functions in the four systems of coordinates 
are available elsewhere, with other properties and applications of 
these functions.7-9,11

Schroedinger’s equation independent of time is solvable also in 
cartesian coordinates x, y, z with also r as ,12 but only a 
partial separation of spatial variables is practicable; because plots of 
these amplitude functions, with the same quantum numbers k, l, m 
as in spherical polar coordinates, exhibit the same shapes and sizes 
of surfaces as the corresponding surfaces based on spherical polar 
coordinates, these Cartesian amplitude functions must be considered 
to be merely a variant of the functions in spherical polar coordinates.

For the system of ellipsoidal coordinates, amplitude functions 
yn,l,m(x,h,f) exhibit limiting values that depend on distance d 
between the foci of the ellipsoid: as d → 0, they become equivalent 
to amplitude functions yk,l,m(r,q,f) in spherical polar coordinates 

or linear combinations of these functions; as d → ∞, they become 
equivalent to amplitude functions  in paraboloidal 
coordinates or their linear combinations, but at finite intermediate 
distance d these amplitude functions have characteristic shapes 
distinct from those of the limiting cases. One can readily recognize 
the similarity between Figure 6 as an intermediate case in relation 
to Figure 4 as a limiting case for these amplitude functions in 
ellipsoidal coordinates, such that y0,1,0(x,h,f) → y0,1,0(u,v,f) as  
d → ∞; the other limiting case in this instance is y1,0,0(r,q,f) as 
d → 0. For the ground state, 1 2S½, of the hydrogen atom, the 
corresponding surfaces of all respective amplitude functions in the 
four systems are perfect spheres.

The amplitude functions in spherical polar and paraboloidal 
coordinates are presented above in terms of the fundamental physical 
constants and atomic parameters so as to provide, for a reader, a 
formulation of these functions alternative to what other reference 
sources typically present.13 For coordinates in the other two systems, 
the formulae become expressed more compactly with the use of 
Bohr radius am corrected for reduced mass m, but in all cases the 
formulae are exact, within a context of the Schroedinger equation, 
and are exactly applicable to an atom of atomic number Z with only 
one electron, and the corresponding value of reduced mass m for 
that atomic system. In no case is the quantum-mechanical nature 
of the atomic nucleus or its finite volume taken into account; the 
motion of the center of mass of the atomic system is assumed to be 
separated and treated appropriately. Apart from the latter qualm, the 
preceding information is precisely suitable for inclusion in a textbook 
of physical chemistry of which the authors might reasonably seek 
to present an unbiased treatment of the hydrogen atom according 
to wave mechanics, but is obviously unsuitable for introductory 
chemistry. Any responsible author of a textbook of general chemistry 
should nevertheless be aware of, and knowledgeable about, these 
fundamental aspects, namely the multiplicity of sets of orbitals, 
before embarking on a discussion involving orbitals in any manner, 
shape or form.

The derivation of the orbitals in all cases is based on a Coulombic 
attraction between a single electron, bearing a single negative 
electric charge, and an atomic nucleus, positively charged, which 
might possess multiple protons according to atomic number Z, such 
as for He+, Li2+, ... Factor Z in all general equations for amplitude 
functions in terms of coordinates in the four primary systems takes 
into account the fact that these functions are legitimately applicable 
to any isolated atomic system involving one electron within the bound 
of a non-relativistic frame. The use of any such function for an atomic 
system involving more than one electron signifies an ignoring of the 
Coulombic repulsion between electrons at the same time that these 
electrons are subject to a Coulombic attraction to an atomic nucleus, 
in violation of the fundamental laws of physics. We reiterate that the 
use of orbitals as basis functions in proper quantitative quantum-
chemical calculations is in no way contrary to this principle, because 
the repulsive effects are taken into account separately in a manner that 
is beyond the scope of qualitative arguments here or in introductory 
chemistry.

In a discussion of the electronic structure of an atom with 
more than one electron, one should logically apply an amplitude 
function derived for that particular system. For instance, for the 
hydride ion or the helium atom, either of which has two electrons 
associated with a single atomic nucleus, an exact amplitude function, 
implicitly in atomic units, for the ground electronic state near a point 
of coalescence is expressed as follows in terms of distances r1 and 
r2 between one or other electron and that nucleus and distance r12 
between the two electrons.14

Figure 8. Surface of y0,0,1(x,r,h) = ±0.0041 am
−3/2; the double conical lobe 

(red) with its apices at the origin has a positive phase; the torus (blue) about 
axis x has a negative phase. The axes are scaled in unit am. The surface is cut 
open to show the interior
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Here atomic number Z is 2 for He and 1 for H−; E represents the 
energy of the ground state of the system; angle a denotes the value of 
arcsin(2r1 r2/(r1

2 + r2
2)) subtended at the nucleus. For a carbon atom 

there would be six distances rj from the nucleus and fifteen distances 
rjk between electrons; the resulting algebraic expression of an exact 
amplitude function would have intolerable length. Although the 
problem of many bodies interacting in a quantum-mechanical system 
is solvable in principle,15 the result for even the He atom, above, is 
intractable for any practical purpose; an effort to produce a result for 
an atom with many electrons would be futile. These circumstances in 
no way excuse, however, a qualitative or pictorial use of amplitude 
functions derived for the hydrogen atom, i.e. orbitals, in an application 
to an atomic system comprising multiple electrons, which would 
amount to extrapolation from a point.

Schemes of electronic structure other than orbitals

If one takes into account that the distribution of the density of 
electronic charge within a molecule or within a unit cell of a crystal 
is continuous and varies gradually in space in the vicinity of atomic 
nuclei, any classification of electrons becomes meaningless. Not only 
is there no 1s, 2p, ... electron, there is no valence electron, no lone pair 
and so forth, because electrons are fundamentally indistinguishable.5

Both experimental measurement and accurate calculation that 
reproduces that measurement, either of which is subject to error, 
indicate that midway between the two protons in molecular 1H2, at its 
equilibrium internuclear distance, the density of electronic charge is 
slightly – less than 10 per cent, but significantly – greater than would 
be the hypothetical case of two non-interacting 1H atoms at the same 
interprotonic distance.16 Although that increased electronic charge 
between the two protons occurs at an expense of a slight depletion of 
electronic charge on the other side of each proton, the attribution of 
a chemical bond to a pair of electrons between the two atomic nuclei 
is clearly a gross exaggeration. The dihydrogen molecule, stable with 
respect to dissociation into two hydrogen atoms by about 4.48 eV, is 
an experimental fact; that dissociation energy is less than one third the 
ionization energy of a hydrogen atom. For the dihydrogen molecular 
cation, 1H2

+,17 the dissociation energy is about 2.65 eV, slightly more 
than half the value for the neutral molecule. The dihelium molecule, 
4He2, is only weakly bound, but it exists and has a bound vibrational 
state. In contrast the dihelium cation, 4He2

+, is strongly bound: its 
dissociation energy, about 3.1 eV, is similar to that of 1H2

+.
For the next homonuclear dinuclear molecule in order of 

increasing atomic number, dilithium 7Li2, one might be tempted 
to insinuate a typical chemical bond involving two electrons, 
notwithstanding the caveat above; this species is stable to dissociation 
by 1.04 eV, whereas, for the dinuclear molecular cation 7Li2

+ for which 
only a one-electron chemical bond would seem to be possible, the 
dissociation energy is much greater, 1.4 eV.18 For the corresponding 
molecular anion, 7Li2

−, the calculated dissociation energy is 0.86 eV, 
only slightly less than for the neutral molecule. If these ideas about 
an electron-pair bond fail in the simplest cases, quite apart from the 

complications such as for the boron hydrides, how can one have 
confidence that their more general application is worth the effort to 
rationalize these effects?

The idea of an octet of valence electrons that Abegg first reported19 
was subsequently elaborated by Kossel20 and by Lewis.21 With the 
additional concept of electron spin dictated by the Pauli principle, 
that octet became viewed as four pairs of electrons, one electron of 
each spin within each pair. An alternative approach involved a double 
quartet of valence electrons, electrons in each quartet having the same 
spin and opposite the spin of electrons in the other quartet.22 In all 
three cases the indistinguishability of electrons, in differentiating 
valence electrons from other electrons, is contradicted. 

The extent of an orbital is infinite, even though there might exist 
surfaces of zero amplitude between regions of positive and negative 
phase, such as is discernible in Figure 2 for instance. One attempt 
to define a localized region of space in which an electron pair was 
likely to be found was implemented in a loge theory, so to partition 
the space surrounding atomic nuclei within a molecule into various 
loges.23 This endeavor seemed successful in the case of LiH but 
was increasingly unsatisfactory for BeH2, BH3 and CH4; as those 
volumes designated as loges were in any case evaluated as a result 
of extensive quantum-chemical calculations, their applicability to 
explain molecular structure in general chemistry is minimal. Another 
region of space in the valence shell in which an electron pair is most 
probably to be found has been called an electron-pair domain;24 such 
a domain is based on an assumed electronic structure, and represents 
yet another circular argument. Any such partition of space surrounding 
atomic nuclei is based on arbitrary criteria, not subject to direct 
experimental confirmation.

Relation between molecular structure and quantum mechanics

To explain the properties and reactions of chemical substances, 
the structure at an atomic level of molecules and materials is the 
most important aspect of contemporary chemistry. Previous authors 
discussing the use of orbitals (Part I) seemed to ignore or to dismiss 
the fact that molecular structure is incompatible with quantum 
mechanics.25 A thorough calculation on a molecule in which all 
particles – both electrons and atomic nuclei – are treated equitably, 
i.e. according to rigorous quantum mechanics, yields no structure.26 
The application of orbitals, as algebraic formulae that are artefacts of 
one particular method of quantum mechanics, to explain molecular 
structure has thus no logical foundation.27 This argument is more 
than semantic: one cannot state that a molecule has a particular shape 
because of orbitals; one can also not state that calculated stationary-
state amplitude functions can be discussed in terms of shape.28 A 
molecular structure might be best thought of as a useful metaphor,29 
but the chemical and physical reality is the structure of molecules 
and materials, for instance, from x-ray crystallography, not their 
purported orbitals. 

Another conundrum is that most practicing quantum chemists 
continue to undertake structural calculations without acknowledging 
this principle of incompatibility;30 in contrast, philosophers of 
chemistry readily accept it.31 Whereas some educators agree that 
it should be discussed with students,28 for the most part it has been 
ignored in chemical education in the twenty-first century.

CONCLUSIONS

We end as we begin, by recalling Dirac’s perceptive dictum, 
“science is concerned only with observable things”.1 Orbitals are not 
observable;5,32 hence leave these algebraic formulae to the physicists, 
if they want.33 In a chemical context, electrons might be tangible 
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things, but individual electrons, or even purported electron pairs, 
are not observable – only the total density of electronic charge in the 
vicinity of atomic nuclei. What are observable, and on which the entire 
edifice of chemistry is based, are the atomic centers in a molecule 
or material, each comprising an atomic nucleus of positive electric 
charge embedded within its associated environment of continuous 
negative electronic charge density. 

A reader should bear in mind that, for the teaching of chemistry 
with orbitals, proponents and opponents alike have been under an 
illusion that we might call the conundrum of chemistry and quantum 
mechanics; contrary to that illusion, molecular structure, which is the 
basis of understanding all modern chemistry, is incompatible with 
quantum mechanics.29 Any use of quantum-mechanical arguments, 
and their artefacts such as orbitals, to explain molecular structure 
is hence profoundly illogical.27 Yes, quantum-mechanical methods, 
with a classical treatment of relative nuclear positions – so semi-
empirically, are useful to refine molecular structures, but so can 
methods of molecular mechanics with no quantum-mechanical 
provenance whatsoever.34

In Part I, we present mostly opinions in a continuing debate 
about the teaching of orbitals in general chemistry, whereas Part II 
presents mathematical evidence that the textbooks ignore. In Part 
III, we provide guidelines to encompass the pedagogical discussion 
in Part I and to combine it with the mathematical realities in Part II.
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