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ABSTRACT
In our recent papers, a non-standard quasi-molecular mechanism was suggested and applied to treat the cosmological
recombination. It was assumed that, in the pre-recombination stage of evolution of the Universe, an electron combined with
two neighbouring protons and created a hydrogen molecular ion, H+

2 in a highly excited state, which then descended into
the lower lying state or dissociated. In this work, we implement a quantitative analysis of this quasi-molecular mechanism of
recombination; namely, we elaborate the scheme of calculation for a free–bound radiative transition. We show that the quasi-
molecular mechanism played a significant role in the pre-recombination and recombination stages of evolution of the early
Universe, and hence must be included into the consideration of the description of a thermal history of the Universe. Together
with the earlier developed treatment of bound–bound radiative transitions in H+

2 , the elaborated scheme of calculation can be
used for the design of a rapid and complete cosmological recombination code.

Key words: early universe – molecular processes – radiative transfer.

1 IN T RO D U C T I O N

This paper is continuation of our previous works (Kereselidze,
Noselidze & Ogilvie 2019b, 2021) in which a non-standard quasi-
molecular mechanism of recombination (QMR) was suggested and
applied to treat the cosmological recombination. According to the
QMR, in the pre-recombination stage of evolution of the Universe,
when the temperature and density of protons were higher than those
of subsequently, the combination of an electron and a proton occurred
in the presence of the nearest neighbouring proton, which participated
in the process. We assumed that an electron collides with two protons
situated one far from another, emits a photon, and creates quasi-
molecule H+

2 in a highly excited state, which then descends into a
low-lying state or dissociates.

The influence of the nearest neighbouring proton on the recombi-
nation decreases when the density of matter decreases. This effect
means that the quasi-molecular mechanism of recombination must
transform into the standard mechanism – the recombination of an
electron on an isolated proton (Peebles 1968; Zel’dovich, Kurt &
Syunyaev 1968) when redshift z decreases. The standard mechanism
of recombination is thus a limiting case of the QMR. This statement
allows us to expect that the QMR correctly describes the formation
of hydrogen in the entire period of the evolution of the Universe from
the pre-recombination stage up to the end of recombination era.

As an electron is much less massive than a proton, the velocity
of electrons substantially exceeded a velocity of protons in the pre-
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recombination and recombination stages of evolution of the Universe.
We are hence able to treat the cosmological recombination within an
adiabatic representation. In this representation, all characteristics of
the process depend on distance R between protons participating in
the recombination.

A quantitative analysis of the QMR requires a knowledge of
wavefunctions that correctly describe an electron involved in the
process. For discrete eigenstates, we made use of wavefunctions
of H+

2 that are derived in an algebraic form at large distance R
between protons (Kereselidze, Noselidze & Chibisov 2003). More
challenging is to obtain the wavefunction that correctly describes
an electron in the initial continuous spectral state. Wavefunctions
of this type are mostly calculated numerically. An application of
numerical wavefunctions to cosmological recombination involves
cumbersome and tedious calculations and, accordingly, is time
consuming. The application of Coulomb spheroidal wavefunctions
obtained in a closed algebraic form for large distances R between the
Coulomb centres (Kereselidze, Noselidze & Devdariani 2019a) does
not simplify calculations. The problem hence requires an alternative
treatment.

The purpose of this work is to obtain the wavefunction of a
colliding electron in a form convenient for its further application,
and to elaborate a rapid and complete scheme of calculation
for cosmological recombination based on the QMR. Furthermore,
we calculate the probability of free–bound radiative transitions
and compare these results with data obtained within the standard
mechanism of recombination; in this way, we reveal the signif-
icance of the QMR at various stages of the evolution of the
Universe.
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Our solution of the problem is based on the use of the non-
relativistic Coulomb Green’s function (CGF) defined in parabolic
coordinates. We apply the CGF to find the wavefunction of an
electron that is moving in the field of one Coulomb centre and
that experiences the influence of another distant Coulomb centre.
The derived wavefunction is applied to calculate probabilities of
free–bound transitions as functions of redshift z. An advantage
of the developed scheme of calculation is that, in the sevenfold
integral arising in the treatment, the fivefold one can be calculated
analytically. This fact is crucial for the creation of a rapid and
complete cosmological recombination code based on the QMR. To
our knowledge, the recombination of an electron and two protons
with the subsequent formation of H+

2 has not been reported in
the literature. In our paper (Kereselidze et al. 2021), free–bound
transition probabilities were evaluated for a particular case, namely
for a linear configuration of particles involved in the recombination.

This paper is organized as follows. After stating our objective, we
present the basic equations in Section 2. In Section 3, we perform a
qualitative analysis of the hydrogen recombination using the Saha–
Boltzmann equation. The wavefunctions of an electron involved in
the recombination are derived in Section 4. The results of calculations
are presented in Section 5, before a conclusion in Section 6. Unless
otherwise indicated, atomic units (e = me = � = 1) are used
throughout the paper.

2 BASIC EQUATIONS

2.1 Energy terms of H+
2

At large distance R between protons, the energy terms of H+
2 are

representable as (Bates & Reid 1968)

U (±)
n1n2m(R) = − 1

2n2
+ 3n(n1 − n2)

2R2
+ O(R−3). (1)

Here, n1 and n2 are the parabolic quantum numbers that specify
electron states in the separate hydrogen atom; m denotes the absolute
value of the projected orbital angular momentum of an electron along
molecular axis R. The total quantum number n is related to n1, n2

and m according to n = n1 + n2 + m + 1. The superscript (±)
denotes the symmetric and antisymmetric states of H+

2 with respect
to a reflection in the plane normal to and bisecting molecular axis.

As is clear from equation (1), the energy term with n2 > n1 is
attractive, whereas the term with n2 < n1 is repulsive at large distance
R between protons. If H+

2 is formed in an excited attractive state, it
does not dissociate directly. From an attractive state, H+

2 descends to
a lower lying repulsive state with a subsequent dissociation or relaxes
down to an attractive state with a subsequent cascade down. Only
the repulsive states of H+

2 thus create the hydrogen atom directly; the
attractive states form hydrogen through an intermediate state. The
behaviour of the low-lying attractive σ (m = 0) and π (m = 1) energy
terms of H+

2 in the entire region of R is depicted in Fig. 1.
The formation of H+

2 in the ground state is also possible from an
attractive state. The probability of this process is comparable with the
probability of the formation of atomic hydrogen (Kereselidze et al.
2021). As the creation of H+

2 in an excited repulsive state leads to
an immediate dissociation, we consider the transition of a colliding
electron into an attractive state with a subsequent formation of H+

2

in a long-lived vibrational state.
The existence of energy terms that are attractive is thus crucial

for the rate of formation of atomic hydrogen, because the colliding
particles can bind during a period greater than a collision period.

Figure 1. Attractive energy terms of H+
2 as functions of distance R between

protons. The solid and dotted curves correspond to σ and π terms, respec-
tively. The dashed line denotes the energy of a colliding electron. Thick arrows
indicate free–bound radiative transitions; a0 = �

2/mee2 = 0.529 × 10−8 cm
is the first Bohr radius of hydrogen and ε0 = mee4/�2 = 27.21 eV. Energy
term U

(−)
000 that has a shallow minimum at R = 12.546a0 (Landau & Lifshitz

1977) is not shown.

2.2 Coulomb Green’s function

The application of the CGF to investigate various radiative and
collisional processes is not new; since the beginning of 1960s, many
papers on the properties and applications of the CGF have been
published (Hostler 1962, 1964; Hostler & Pratt 1963; Kereselidze &
Chibisov 1975; Blinder 1981; Chetouani & Hamman 1987; Swainson
& Drake 1991; Maquet, Veniard & Marian 1998; Zaytsev et al. 2020).

The CGF can be constructed from its spectral representation,

G(+)(�r, �r ′) =
∑

n

ψ∗
n (�r)ψn(�r ′)
En − E

, (2)

in which the summation runs over the complete set of discrete and
continuum eigenstates; symbol (+) corresponds to an outgoing wave
when r → ∞. In the first attempt to evaluate the CGF, Meixner
(1933) tried to evaluate this function by explicit summation over
eigenfunctions in parabolic coordinates. Further progress was made
possible with an integral representation for a product of two Whit-
taker functions. Hostler (1962) obtained the general closed-form ex-
pression for G(+)(�r, �r ′) on summing over Coulomb eigenfunctions in
spherical polar coordinates. Blinder (1981) showed that summation
(2) explicitly written in terms of discrete and continuous eigenstates
in parabolic coordinates leads to the integral representation of the
CGF.

Making use of the scheme of calculation developed by Blinder,
we evaluate the CGF in the form convenient for our calculations:

G(+)(�r, �r ′) = − ık

2π

∞∑
m=−∞

eım(ϕ−ϕ′)
∫ ∞

0
dseı k

2 (μ+ν+μ′+ν′) cosh s

× sinh s
(

coth
s

2

) 2ı
k

Jm

(
k(μμ′)1/2 sinh s

)
× Jm

(−k(νν ′)1/2 sinh s
)
. (3)

In (3), μ = r(1 + cos ϑ), ν = r(1 − cos ϑ), ϕ = arctan (y/x) are
parabolic coordinates, in which r is the radial variable, ϑ is the polar
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Non-standard mechanism 1757

Figure 2. Degree of ionization xp as a function of redshift z. Curve 1 –
standard mechanism of recombination; curve 2 – QMR.

angle, and ϕ is the azimuthal angle. Details of the derivation of
equation (3) are presented in Appendix A.

3 QUA LITATIV E A NA LY SIS O F THE
H Y D RO G E N R E C O M B I NAT I O N

We proceed to investigate the question how significant is the influence
of a variation of atomic parameters, namely a variation of the binding
energy of an electron in atomic hydrogen, on the recombination.

At R � rn, where rn = 2n2 is the radius of the hydrogen atom in
the nth excited state, the electron energy in H+

2 reads

εn(R) = − 1

2n2
− 1

R
+ O(R−2). (4)

Inserting into equation (4) the average distance between protons
R ≡ R, which might be assumed to be no larger than 5rn = 10n2 in the
pre-recombination stage of the evolution of the Universe (Kereselidze
et al. 2019b), we obtain for the binding energy of an electron that
I n = 1.2In, in which In = 1/2n2 is the binding energy of an electron
in an isolated hydrogen atom. We thus obtain that in the perturbed
hydrogen atom a deviation of the ionization energy from its value in
unperturbed atom attains 20 per cent.

Introducing the degree of ionization xp = np/n, in which n = nH

+ np is the number density of all H in both bound and ionized states,
and assuming that ne = np in the pre-recombination stage of the
evolution of the Universe, we write the Saha–Boltzmann equation
[see equation (3) in Kereselidze et al. (2019b)] as

x2
p

1 − xp
= 1

n

(
mekBT

2π�2

)3/2

e− In
kBT . (5)

With derived equation (5) and n = const × (1 + z)3 (Zel’dovich
& Novikov 1975), we can calculate xp as a function of redshift z.
We find const = 1.4 × 10−7 cm−3 on fitting xp, obtained from (5)
in which I n = 13.6 eV with xe presented in a paper of Sunyaev &
Chluba (2009) [these authors used equation (5) but with a known n

for the calculation of xe]. The results of calculations are depicted in
Fig. 2. This figure shows that xp reaches half of its maximal value at
redshift z = 1359 according to the standard model of recombination,
whereas xp = 1/2 at z = 1642 according to the QMR. The obtained
values demonstrate clearly that the degree of ionization is sensitive to
the binding energy of an electron participating in the recombination.
Liu et al. (2019) made the same conclusion on varying the physical
and phenomenological parameters in a standard code to compute the
recombination history of the Universe.

We thus obtain that, because the binding energy of an electron
was greater in the pre-recombination stage of the evolution of the
Universe, the recombination began at higher temperatures, i.e. at
larger redshift z. The preceding analysis is qualitative: The results
of precise calculations would naturally differ from values obtained
using the Saha–Boltzmann equation for equilibrium recombination.
In what follows, we show that the difference between the standard
mechanism of recombination and the QMR persists in a more
accurate treatment.

4 WAV E F U N C T I O N S O F A N E L E C T RO N

To begin, we find the wavefunction of an electron that collides with
two fixed protons a and b. At large distance R between protons, the
wavefunction of an electron is representable as



(±)
i = 1√

2

(
ψ (a) ± ψ (b)

)
. (6)

In (6), ψ (a)(ψ (b)) is the wavefunction of an electron moving in the
Coulomb field of proton a(b) and that is perturbed by another proton.
For definiteness, we derive wavefunction ψ (a) that is centred on
proton a. The appropriate Schrödinger equation reads(

−1

2
��r − 1

r
− k2

0

2

)
ψ (a)(�r) = 1∣∣∣ �R − �r

∣∣∣ψ (a)(�r). (7)

Here, �r is the position vector of an electron with respect to proton
a, k2

0/2 is the electron energy, and R � 1 is the distance between
protons; �k0 is the wavevector directed along axis z and vector �R is
directed from proton a to proton b.

Our purpose is to find the solution of equation (7) that is valid in
the entire space except the region near proton b. As R is large, one
can assume that r < R in this space [far from both nuclei at which r
∼ R � 1 the solution of equation (7) is known – it is a plane wave].

Term
∣∣∣ �R − �r

∣∣∣−1
on the right-hand side of equation (7) can hence be

expanded in powers of r/R. Considering only the first two terms of
this expansion, equation (7) takes the form(

−1

2
��r − 1

r
− k2

2

)
ψ(�r) = υ(�r)ψ(�r), (8)

in which k2 = k2
0 + 2/R, υ = �n�r/R2, and �n = �R/R. In (8) and the

following equations superscript a is omitted for wavefunction ψ (a).
Introducing the CGF as the solution of the inhomogeneous

differential equation(
−1

2
��r − 1

r
− k2

2

)
G(+)(�r, �r ′) = δ(�r − �r ′), (9)

the eigenfunction of equation (8) that satisfies the appropriate
boundary conditions is expressible as

ψ�k(�r) = ψ
(0)
�k (�r) +

∫
G(+)(�r, �r ′)υ(�r ′)ψ�k(�r ′)d�r ′. (10)

Here, ψ
(0)
�k (�r) is the solution of equation (8) with zero right side. The

solution of the homogeneous equation that is normalized with the
delta function reads (Landau & Lifshitz 1977)

ψ
(0)
�k (�r) = Nie

i�k�rF
(
i/k, 1, i(kr − �k�r)

)
,

Ni = (2π)−3/2eπ/2k�(1 − i/k), (11)

in which F
(
i/k, 1, i(kr − �k�r)

)
is a confluent hypergeometric func-

tion, �(1 − i/k) is a gamma function, and Ni is a normalizing factor.
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In equation (10), function υ(�r ′) is of order R−2 in the region near
nucleus a, increases when r

′
increases, and becomes of order R−1 near

nucleus b. In contrast, function ψ(�r ′) is oscillatory with decreasing
amplitude as variable r

′
increases (Kereselidze et al. 2019a). Hence,

on the right-hand side of equation (10) the second term is much
smaller than the first one, and, accordingly, can be considered as a
perturbation. Replacing ψ�k(�r ′) by ψ

(0)
�k (�r ′) in (10), we thereby obtain

ψ�k(�r) in the Coulomb–Born approximation

ψ�k(�r) = ψ
(0)
�k (�r)

+ Ni

R2

∫
G(+)(�r, �r ′)(�n�r ′)ei�k�r ′

F

(
i

k
, 1, i(kr ′ − �k�r ′)

)
d�r ′.

(12)

The derived wavefunction is valid in the entire space; an exception
is a volume in the vicinity of nucleus b. In (12), the first unperturbed
term is of order unity, whereas the second perturbed term is much
smaller. The wavefunction centred on proton b can be found in an
analogous manner.

In parabolic coordinates

�n�r ′ = μ′ − ν ′

2
cos ϑ �R +

√
μ′ν ′ cos ϕ′ sin ϑ �R, (13)

in which ϑ �R is the angle between �R and axis z; azimuthal angles
ϕ

′
and ϕ �R are measured from plane (�z, �R); accordingly, ϕ �R = 0

in (13). Inserting (11), (13), and (3) into (12) and performing the
integration over ϕ

′
, we obtain the wavefunction of a colliding electron

in parabolic coordinates,

ψ�k = ψ
(0)
�k (μ, ν)

− ikNi

8R

[
f1(μ, ν) cos ϑ �R + f2(μ, ν) cos ϕ sin ϑ �R

]
, (14)

in which

f1 = R−1
∫ ∞

0
ds sinh s

(
coth

s

2

)2i/k

×
∫ μ′

max

0

∫ ν′
max

0
ei k

2 [(μ+ν+μ′+ν′) cosh s+μ′−ν′]

× J0

(
k(μμ′)1/2 sinh s

)
J0

(−k(νν ′)1/2 sinh s
)

×F (i/k, 1, ikν ′)(μ′2 − ν ′2)dμ′dν ′, (15)

and

f2 = 2R−1
∫ ∞

0
ds sinh s

(
coth

s

2

)2i/k

×
∫ μ′

max

0

∫ ν′
max

0
ei k

2 [(μ+ν+μ′+ν′) cosh s+μ′−ν′]

× J1

(
k(μμ′)1/2 sinh s

)
J1

(−k(νν ′)1/2 sinh s
)

×F (i/k, 1, ikν ′)
√

μ′ν ′(μ′ + ν ′)dμ′dν ′.

In (15), the upper limits of integration are chosen from the condition
μ′

max + ν ′
max = R/2.

We proceed to find the wavefunctions of a bound electron. For this
purpose, we introduce a rotating coordinate system (x̃, ỹ, z̃). If we
assume that axis z̃ is directed along �R and that protons are located
on this axis with coordinates z̃a = 0 and z̃b = R, the wavefunction
of a bound electron can be written as a sum or difference of the
appropriate wavefunctions centred on each nucleus (Bates & Reid
1968)



(±)
f = 1√

2

(
ψ

(a)
n1,n2,±m(μ̃a, ν̃a, ϕ̃) ±ψ

(b)
n1,n2,±m(μ̃b, ν̃b, ϕ̃)

)
. (16)

In (16), μ̃, ν̃, ϕ̃ are parabolic coordinates defined in the rotating
coordinate system.

When the internuclear distance in H+
2 is greater than the size of

the shell on either nucleus, the wavefunction centred on nucleus a is
representable as (Kereselidze et al. 2003)

ψn1,n2,±m = Nf Xn1,m(μ̃)Yn2,m(ν̃)e±imϕ̃/
√

2π, (17)

with

Xn1,m = e− γ
2 μ̃μ̃

m
2 × F

(−n1, m + 1, γ α1μ̃
)

×
(

1 + (2n + 2n2 + m)μ̃

4R

)
+ O(R−2),

Yn2,m = e− γ
2 ν̃ ν̃

m
2 × F

(−n2, m + 1, γ α2ν̃
)

×
(

1 + (2n − 2n1 + m)ν̃

4R

)
+ O(R−2), (18)

in which Nf is a normalizing factor; γ =
√

1/n2 + 2/R and α1,2 =√
1 ∓ n(2n2,1 + m + 1 ± 2n)/R. The presented wavefunction is

valid in the main region of the distribution of a bound electron,
i.e. in the region in which μ̃, ν̃ ≤ R/2.

We rewrite wavefunction (17) in variables μ, ν, and ϕ that are
defined in the fixed coordinate system. Parabolic coordinates in the
rotating and fixed coordinate systems are related by relations

μ̃ = μ + ν

2
+ μ − ν

2
cos ϑ �R + √

μν cos ϕ sin ϑ �R,

ν̃ = μ + ν

2
− μ − ν

2
cos ϑ �R − √

μν cos ϕ sin ϑ �R,

ϕ̃ = arctan
√

μν sin ϕ√
μν cos ϕ cos ϑ �R − μ−ν

2 sin ϑ �R
. (19)

In variables μ, ν, and ϕ, wavefunction (17) reads

ψn1,n2,±m = Nf e− γ
2 (μ+ν)u

m
2 F

(−n1, m + 1, γ α1μ̃
)

×F
(−n2,m + 1, γ α2ν̃

) [
1 + 1

2R
Q(μ̃, ν̃)

]
× e±imϕ̃/

√
2π, (20)

in which

u =
(

μ + ν

2

)2

−
(

μ − ν

2
cos ϑ �R + √

μν cos ϕ sin ϑ �R

)2

,

Q = n(μ + ν) + n2μ̃ − n1ν̃

+m

(
μ − ν

2
cos ϑ �R + √

μν cos ϕ sin ϑ �R

)
, (21)

and μ̃, ν̃, ϕ̃ are defined with equations (19). We note that, in the
wavefunction of a bound electron, the dependence on an orientation
of protons arises already in the unperturbed term, whereas this
dependence appears in the perturbed term in the wavefunction of
a colliding electron.

5 R E S U LT S O F C A L C U L AT I O N S

In the fixed coordinate system, the operator of electric-dipole strength
is �d = −(�ix + �jy + �kz). For convenience, we calculate the matrix
elements of operators d(±) = −(x ± iy) and d = −z. In parabolic
coordinates, these operators read d (±) = −√

μνe±iϕ and d = −(μ −
ν)/2.
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Non-standard mechanism 1759

Matrix elements di, f and d
(±)
i,f calculated over wavefunctions (14)

and (20) are representable as

di,n1n2±m = −Nf

8

[
Ui,n1n2±m(ϑ �R) + 1

2R
Vi,n1n2±m(ϑ �R)

]
,

d
(±)
i,n1n2±m = −Nf

4

[
U

(±)
i,n1n2±m(ϑ �R) + 1

2R
V

(±)
i,n1n2±m(ϑ �R)

]
, (22)

in which

Ui,n1n2±m =
∫ ∞

0

∫ ∞

0
e− γ

2 (μ+ν)ψ
(0)
�k (μ, ν)

×An1n2±m(μ, ν)(μ2 − ν2)dμdν,

Vi,n1n2±m =
∫ ∞

0

∫ ∞

0
e− γ

2 (μ+ν)
{

ψ
(0)
�k (μ, ν)Bn1n2±m(μ, ν)

− ikNi

4
[f1(μ, ν)An1n2±m(μ, ν) cos ϑ �R

+ f2(μ, ν)Cn1n2±m(μ, ν) sin ϑ �R]}(μ2 − ν2)dμdν, (23)

and

U
(±)
i,n1n2±m =

∫ ∞

0

∫ ∞

0
e− γ

2 (μ+ν)ψ
(0)
�k (μ, ν)A(±)

n1n2±m(μ, ν)

× √
μν(μ + ν)dμdν,

V
(±)
i,n1n2±m =

∫ ∞

0

∫ ∞

0
e− γ

2 (μ+ν)
{

ψ
(0)
�k (μ, ν)B (±)

n1n2±m(μ, ν)

− ikNi

4
[f1(μ, ν)A(±)

n1n2±m(μ, ν) cos ϑ �R

+ f2(μ, ν)C(±)
n1n2±m(μ, ν) sin ϑ �R]}√μν(μ + ν)dμdν.

Because the wavefunction of a bound electron exponentially
decreases when μ and ν increase, the integration is extended
to infinity in (23). Functions An1n2±m, Bn1n2±m,Cn1n2±m and
A

(±)
n1n2±m, B

(±)
n1n2±m, C

(±)
n1n2±m are defined in Appendix B.

The probability of a free–bound radiative transition depends on
the distance R between protons and is defined as (Heitler 1954)

Wi,f (R) = 4ω3
i,f (R)

3c3

∣∣∣ �di,f (R)
∣∣∣2

. (24)

Here, ωi,f is the frequency of an emitted photon, c is the speed of
light, and �di,f is the transition matrix element. Taking into account
that∣∣∣ �di,f

∣∣∣2
= ∣∣di,f

∣∣2 + 1

2

∣∣∣d (+)
i,f

∣∣∣2
+ 1

2

∣∣∣d (−)
i,f

∣∣∣2
, (25)

and assuming that R ≡ R in (24), with R as the average distance
between protons [equation (5) with nH = ne in Kereselidze et al.
(2019b)], we thereby determine the free–bound transition probability
as a function of redshift.

We calculate the free–bound transition probabilities in σ and π

attractive states of H+
2 with n ≤ 5 (n1 + n2 + m ≤ 4) at the parallel

(ϑ �R = 0) and perpendicular (ϑ �R = π/2) orientations of protons with
respect to the direction of propagation of a colliding electron. In
the transition matrix elements, integrals over ϕ, ϕ

′
and μ, μ

′
, ν

are calculated analytically; the appropriate explicit expressions are
presented in Appendixes B and C. The integration over ν

′
and s is

performed numerically.
Probabilities as functions of redshift z are shown in Fig. 3 – for

a transition into the ground state, and in Figs 4, 5, and 6 – for
a transition into the excited states of H+

2 . Transition probabilities
calculated using the standard mechanism of recombination, that is

Figure 3. Probabilities Wi, 000 as functions of redshift z. Red solid curve –
influence of a second proton is neglected and blue dotted curves – influence
of a second proton is taken into account; curve 1 – ϑ �R = 0 and curve 2 –
ϑ �R = π/2; τ 0 = �

3/mee4 = 2.42 × 10−17 s.

Figure 4. As in Fig. 3 but for probabilities Wi, 010.

Figure 5. As in Fig. 3 but for probabilities Wi, 020.

when the influence of the neighbouring proton is ignored (R = ∞),
are shown as red solid curves. Probabilities calculated using the QMR
are depicted with blue dotted curves. Curves 1 and 2 correspond to
probabilities at the parallel and perpendicular orientations of protons
with respect to a colliding electron. Concerning these probabilities,
the following should be stated. As the wavefunction of a colliding
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Figure 6. As in Fig. 3 but for probabilities Wi, 220.

electron is defined in parabolic coordinates with a distinctive direc-
tion, transition probabilities depend on this direction even in a case
when the influence of a second proton is neglected (red solid curves
in Figs 4, 5, and 6). Only the transition probability into the ground
state of hydrogen does not depend on a distinctive direction (red
solid curve in Fig. 3). The reason is that the wavefunction of an
electron in the ground state of H does not depend on a distinctive
direction.

Figs 3–6 show that all transition probabilities decrease when z

increases, and that the most probable is a transition into the ground
state of H+

2 . We note that the direct radiative recombination into
the ground state of H+

2 is inefficient because the resulting photon
has energy greater than that sufficient to ionize an adjacent H+

2 that
must hence dissociate, leaving no net result. For the formation of
atomic hydrogen in the early Universe, a crucial factor was thus the
recombination into the excited states of H+

2 .
Figs 4, 5 and 6 demonstrate clearly that the transition probabilities

with and without inclusion of an influence of a second proton coincide
completely for z < 1500, differ negligibly for 1500 < z < 3000 but
differ perceptibly for z > 4000. The latter statement is especially
evident for the recombination into the excited state of H+

2 with n1

= n2 = 2 and m = 0 (the corresponding attractive energy term is
not shown in Fig. 1). We note that all calculated probabilities, which
are not shown in Figs 4–6, exhibit a similar behaviour. In matrix
elements Vi,n1n2±m and V

(±)
i,n1n2±m, the main contribution gives the

first terms in equations (23). The obtained results thus confirm that
the QMR correctly describes the radiative recombination in the pre-
recombination stage of the evolution of the Universe and naturally
transforms into the standard mechanism of recombination when z

decreases.
To make more apparent the difference between the transition

probabilities, calculated with the QMR and with the standard
mechanism of recombination, we present in Fig. 7 the ratio ηn1n2m =
|Wn1n2m(R) − Wn1n2m(∞)|/Wn1n2m(∞) as a function of redshift z for
three sets of parabolic quantum numbers. Fig. 7 shows that ηn1n2m is
minute for z < 1500 and increases when z increases. At z = 4000,
ηn1n2m increases from 0.9 per cent for n1 = 0, n2 = 1, m = 0, and
ϑ �R = 0 to 5.2 per cent for n1 = n2 = 2, m = 0, and ϑ �R = π/2. These
obtained values show that the influence of a second proton on the
recombination was significant, especially for the radiative transitions
into the excited states of H+

2 .
The scheme of calculation elaborated in this paper together with

equations derived in Kereselidze et al. (2021) allows us to calculate
the total probability as a function of z, which is a product of free–

Figure 7. Ratios ηn1n2m as functions of redshift z. Curve 1 – η010, curve 2 –
η020, and curve 3 – η220; in all these cases, ϑ �R = 0. Curve 4 –η220, ϑ �R = π/2.

bound and bound–bound transition probabilities. Depending on z, the
calculation of one free–bound transition probability Wi,n1n2m takes
from several to several tens of seconds on a standard computer.
Probabilities of bound–bound transitions occurring in H+

2 do not
depend on z.

6 C O N C L U S I O N S

In this work, we implement a quantitative analysis of the recombi-
nation of an electron and a proton when the nearest neighbouring
proton participates in the process. The system of colliding particles
is considered as a quasi-molecule, H+

2 , temporarily formed during a
collision and is described in an adiabatic representation. We elaborate
a rapid and complete scheme of calculation, which allows us to
determine the probability of free–bound transition, in principle, into
an arbitrary state of H+

2 . Our calculations demonstrate clearly that
the participation of a second proton in the recombination alters
the probability of a free–bound transition, especially in the pre-
recombination stage of the evolution of the Universe. This elaborated
scheme of calculation, with the earlier developed algorithm for
bound–bound transitions in H+

2 , enables a revelation of details of
the cosmological radiative recombination.

The main result of the quasi-molecular approach is that in this
case the formation of H+

2 in its ground state is available and that
the probability of this process is comparable with the probability of
the formation of atomic hydrogen. The formation of H+

2 decreases
the rate of recombination of hydrogen relative to the recombination
of an electron on an isolated proton. Because the binding energy
of an electron in H+

2 is greater than that in H, the cosmological
recombination began at higher temperatures, i.e. at larger redshift
(z � 2000–5000). The participation of a second proton in the
process thus stretched the recombination compared with the standard
mechanism. This effect can lead to a larger value of the present rate
of expansion of the Universe obtained using the cosmic microwave
background data, and thus might contribute to resolving the problem
of the Hubble tension (Beradze & Gogberashvili 2021).

In this work, we have calculated the probability of a free–bound
transition into quasi-molecular states with n ≤ 5. The objective is to
extend calculations on including in the treatment a free–bound and a
bound–bound radiative transition into an optimally maximal number
of excited states.

The hydrogen molecular ions formed in the ground state are
destroyed through photoionization, photoexcitation in a repulsive
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Non-standard mechanism 1761

quasi-molecular state, or a collision with other particles. We recog-
nize that analysing the process of the formation of H+

2 is insufficient
and the destruction processes should also be studied. A treatment
of the destruction processes is complicated and requires a separate
consideration.

The results obtained in this paper thus make obvious that the
quasi-molecular mechanism of recombination played a significant
role in the formation of atomic hydrogen in the early Universe, and
hence must be taken into account at the designing of a complete
cosmological recombination code.
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APPENDI X A

In parabolic coordinates, the CGF can be represented as this expan-
sion (Blinder 1981)

G(+)(�r, �r ′) = i

2π2k

∞∑
m=−∞

eim(ϕ−ϕ′)

×
∫ ∞

−∞
dλg(+)

m (β − λ, μ, μ′)g(+)
m (λ, ν, ν ′) (A1)

in which

g(+)
m (λ, x, x ′) = � ((m + 1)/2 − iλ)

�(m + 1)

Miλ,m/2 (−ikx<)

(x<)1/2

× Wiλ,m/2 (−ikx>)

(x>)1/2
, (A2)

Miλ,m/2(− ikx<) and Wiλ,m/2(− ikx>) represent Whittaker functions of
the first and second kinds, respectively, β = 1/k and x< = min(x, x

′
),

x> = max(x, x
′
).

Using the integral representation of the product of Whittaker
functions (Buchholz 1969; Gradshtein & Ryzhik 1980), we obtain

g(+)
m (λ, x, x ′) = (−1)

m+1
2 k

×
∫ ∞

0
dsei k

2 (x+x′) cosh s
(

coth
s

2

)2iλ

× Jm

(
k
√

xx ′ sinh s
)

, (A3)

in which Jm is a Bessel function.
Returning to equation (A1), integral representation (A3) becomes

applicable to each factor g(+)
m (β − λ, μ, μ′)g(+)

m (λ, ν, ν ′). As a result,
we obtain that

G(+)(�r, �r ′) = − ik

2π2

∞∑
m=−∞

(−1)meim(ϕ−ϕ′) ×
∫ ∞

0
dsei k

2 (μ+μ′) cosh s

× Jm

(
k
√

μμ′ sinh s
) (

coth
s

2

)2iβ

×
∫ ∞

0
dtei k

2 (ν+ν′) cosh t Jm

(
k
√

νν ′ sinh t
)

×
∫ ∞

−∞
dλ

(
coth

s

2

)−2iλ
(

coth
t

2

)2iλ

. (A4)

The integral over λ gives a delta function,

G(+)(�r, �r ′) = − ik

2π2

∞∑
m=−∞

(−1)meim(ϕ−ϕ′) ×
∫ ∞

0
dsei k

2 (μ+μ′) cosh s

× Jm

(
k
√

μμ′ sinh s
)

sinh s
(

coth
s

2

)2iβ

×
∫ ∞

0
dtei k

2 (ν+ν′) cosh t Jm

(
k
√

νν ′ sinh t
)
δ(t − s).

(A5)

Performing an integration over t and taking into account that (−
1)mJm(x) = Jm(− x), we arrive at equation (3).
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APPENDIX B

Here are defined functions that appear in equation (23):

An1n2±m = 1√
2π

∫ 2π

0
e∓imϕ̃u

m
2 F

(−n1,mf + 1, γ α1μ̃
)

×F (−n2,mf + 1, γ α2ν̃)dϕ,

Bn1n2±m = 1√
2π

∫ 2π

0
e∓imϕ̃u

m
2 Q

(
μ̃, ν̃

)
×F (−n1,m + 1, γ α1μ̃)F (−n2, m + 1, γ α2ν̃)dϕ,

Cn1n2±m = 1√
2π

∫ 2π

0
e∓imϕ̃u

m
2 F

(−n1,m + 1, γ α1μ̃
)

×F (−n2,m + 1, γ α2ν̃) cos ϕdϕ,

A
(±)
n1n2±m = 1√

2π

∫ 2π

0
e±iϕe∓imϕ̃u

m
2

×F (−n1,m + 1, γ α1μ̃)F (−n2, m + 1, γ α2ν̃)dϕ,

B
(±)
n1n2±m = 1√

2π

∫ 2π

0
e±iϕe∓imϕ̃u

m
2 Q

(
μ̃, ν̃

)
×F (−n1,m + 1, γ α1μ̃)F (−n2, m + 1, γ α2ν̃)dϕ,

C
(±)
n1n2±m = 1√

2π

∫ 2π

0
e±iϕe∓imϕ̃u

m
2

×F (−n1,m + 1, γ α1μ̃)F (−n2, m + 1, γ α2ν̃) cos ϕdϕ.

(B1)

When ϑ �R = 0, these integrals are readily solvable:

An1n2±m(0) =
√

2π(μν)
m
2 F (−n1, m + 1, γ α1μ)

× F (−n2, m + 1, γ α2ν)δm,0,

Bn1n2±m(0) =
√

2π(μν)
m
2 Q(μ, ν)F (−n1,m + 1, γ α1μ)

× F (−n2, m + 1, γ α2ν)δm,0,

Cn1n2±m(0) =
√

π

2
(μν)

m
2 Q(μ, ν)F (−n1, m + 1, γ α1μ)

× F (−n2, m + 1, γ α2ν)δm,1,

A
(±)
n1n2±m (0) =

√
2π(μν)

m
2 F (−n1, m + 1, γ α1μ)

× F (−n2, m + 1, γ α2ν)δm,1,

B
(±)
n1n2±m (0) =

√
2π(μν)

m
2 Q(μ, ν)F (−n1,m + 1, γ α1μ)

× F (−n2, m + 1, γ α2ν)δm,1,

C
(±)
n1n2±m (0) =

√
π

2
(μν)

m
2 F (−n1,m + 1, γ α1μ)

× F (−n2, m + 1, γ α2ν)
(
δm,0 + δm,2

)
. (B2)

When ϑ �R = π/2, integrals can be substantially simplified in (B1)
on making the appropriate transformations:

An1n2±m

(π

2

)
= 1

2m
√

2π

∫ 2π

0

(
μ − ν ± 2i

√
μν sin ϕ

)m

×F (−n1, m + 1, γ α1μ̃)F (−n2,m + 1, γ α2ν̃)dϕ,

Bn1n2±m

(π

2

)
= 1

2m
√

2π

∫ 2π

0

(
μ − ν ± 2i

√
μν sin ϕ

)m

×F
(−n1, m + 1, γ α1μ̃

)
F

(−n2, m + 1, γ α2ν̃
)

×Q
(
μ̃, ν̃

)
dϕ,

Cn1n2±m

(π

2

)
= 1

2m
√

2π

∫ 2π

0

(
μ − ν ± 2i

√
μν sin ϕ

)m

×F
(−n1, m + 1, γ α1μ̃

)
F

(−n2, m + 1, γ α2ν̃
)

× cos ϕdϕ,

A
(±)
n1n2±m

(π

2

)
= 1

2m
√

2π

∫ 2π

0
e±iϕ

(
μ − ν ± 2i

√
μν sin ϕ

)m

×F (−n1,m + 1, γ α1μ̃)F (−n2, m + 1, γ α2ν̃)dϕ,

B
(±)
n1n2±m

(π

2

)
= 1

2m
√

2π

∫ 2π

0
e±iϕ

(
μ − ν ± 2i

√
μν sin ϕ

)m

×F (−n1,m + 1, γ α1μ̃)F (−n2, m + 1, γ α2ν̃)

×Q(μ̃, ν̃)dϕ,

C
(±)
n1n2±m

(π

2

)
= 1

2m
√

2π

∫ 2π

0
e±iϕ

(
μ − ν ± 2i

√
μν sin ϕ

)m

×F (−n1,m + 1, γ α1μ̃)F (−n2, m + 1, γ α2ν̃)

× cos ϕdϕ. (B3)

For given quantum numbers n1, n2, and m, these integrals become a
sum of analytically solvable integrals.

APPENDI X C

Integrals over μ that appear in equation (23) in terms proportional to
R−1 can be reduced to this integral,

υ (p)
τ (s, μ′) =

∫ ∞

0
e− γ−ik cosh s

2 μJτ

(
k(μμ′)1/2 sinh s

)
μpdμ, (C1)

in which τ = 0 or 1; p = 0, 1, 2, . . . for τ = 0 and p = 1/2, 3/2, 5/2,
. . . for τ = 1. This integral is analytically solvable (Gradshtein &
Ryzhik 1980)

υ(p)
τ

(
s, μ′) = 2p+1− τ

2 �
(
p + 1 + τ

2

)
(k sinh s)τ μ′ τ

2

�(τ + 1)(γ − ik cosh s)p+1+ τ
2

×F

(
p + 1 + τ

2
, τ + 1, − (k sinh s)2μ′

2(γ − ik cosh s)

)
.

(C2)

In the confluent hypergeometric function, the first parameter is
equal to the second one or is greater by an integer, p + 1 + τ /2 = τ

+ 1 + l with l = 0, 1, 2. . . . Taking into account that F(τ + 1, τ +
1, x) = ex and making use of a recurrence relation (Janke, Emde &
Lösch 1960)

F (a + 1, τ + 1, x) = a−1[(2a − τ − 1 + x) F (a, τ + 1, x)

+ (τ + 1 − a)F (a − 1, τ + 1, x)], (C3)

F(τ + 1 + l, τ + 1, x) becomes represented as a product of ex and a
polynomial function of order l.

Inserting υ (p)
τ (s, μ′) into integrals over μ

′
, we arrive at a sum of

analytically solvable integrals of this type,

χ (p′)
τ (s) =

∫ R/2

0
e
− 1

2

(
(k sinh s)2

γ−ik cosh s
−ik(1+cosh s)

)
μ′

μ′(p′+τ/2)dμ′, (C4)

in which p
′ + τ /2 = 0, 1, 2, . . . .
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Integrals over ν that appear in equation (23) in terms proportional
to R−1

h(ρ)
τ (s, ν ′) =

∫ ∞

0
e− γ−ik cosh s

2 νJτ

(−k(νν)1/2 sinh s
)
νρdν, (C5)

in which ρ = 0, 1, 2, . . . for τ = 0 and ρ = 1/2, 3/2, 5/2, . . . for τ

= 1, can be solved as (C1). Taking into account that Jτ (− x) = (−
1)τ Jτ (x), we obtain

h(ρ)
τ (s, ν ′) = (−1)τ

2ρ+1−τ/2� (ρ + 1 + τ/2) (k sinh s)τ ν ′τ/2

�(τ + 1)(γ − ik cosh s)ρ+1+τ/2

× F

(
ρ + 1 + τ

2
, τ + 1, − (k sinh s)2ν ′

2(γ − ik cosh s)

)
. (C6)

In (C6), the confluent hypergeometric function can be represented
as a product of an exponential function and a polynomial function.

Inserting h(ρ)
τ (s, ν ′) into integrals over ν

′
, we obtain a sum of

integrals of this type,

g
(ρ′)
τ (s) =

∫ R
2

0
e
− 1

2

(
(k sinh s)2

γ−ik cosh s
+ik(1−cosh s)

)
ν′

×F

(
i

k
, 1, ikν ′

)
ν ′(ρ′+τ/2)dν ′, (C7)

in which ρ
′ + τ /2 = 0, 1, 2, . . . . These integrals we calculate

numerically.
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