Journal of Molecular Structure, 18 (1973) 285–293 © Elsevier Scientific Publishing Company, Amsterdam – Printed in The Netherlands

HARMONIC FORCE FIELDS AND MEAN AMPLITUDES OF VIBRATION FOR SOME MOLECULES CONTAINING NITROGEN: METHANAL AZINE

J. F. OGILVIE

Department of Chemistry, Memorial University of Newfoundland, St. Johns's, Newfoundland (Canada)

S. J. CYVIN AND B. N. CYVIN Institute of Theoretical Chemistry, The Technical University of Norway, N-7034 Trondheim-NTH (Norway) (Received 12 April 1973)

ABSTRACT

A harmonic force field was developed for methanal azine. The force constants were used to calculate mean amplitudes of vibration, perpendicular amplitude correction coefficients and Coriolis coupling coefficients.

INTRODUCTION

Methanal azine, $H_2CN_2CH_2$, is the simplest acyclic azine. Spectroscopic studies¹ of the vapour and solid gave conclusive evidence for the s-transoid centrosymmetric planar structure, which belongs to the symmetry point group C_{2h} . The cited work¹ deals with infrared spectra in the vapour and solid states and Raman shifts in the solid. A complete assignment of the vibrational wave-numbers for $(CH_2)_2N_2$ was proposed. Spectra of several deuterated compounds were also recorded.

In the present work a harmonic force field is developed on the basis of the C_{2h} structure for methanal azine. The proposed assignment¹ is tested in relation to reasonable force constants. The final set of force constants is used to calculate various molecular properties: Coriolis coupling coefficients², mean amplitudes of vibration³, and perpendicular amplitude correction coefficients³.

MOLECULAR MODEL

Figure 1 shows the s-transoid centrosymmetric planar structure of symmetry C_{2h} adopted for the methanal azine molecule. The applied structural parameters

Fig. 1. Molecular model for methanal azine; symmetry C_{2h} . The in-plane valence coordinates are indicated. The applied out-of-plane valence coordinates are: (i) CH₂ out-of-plane bendings γ and γ' for the atoms 7-5-1-3 and 8-6-2-4, respectively, (ii) CN torsions τ_1 and τ_1' involving the atoms 5-1-3-4 and 6-2-4-3, respectively, and (iii) the NN torsion τ_2 for 1-3-4-2. The capital letters R₁, R₂, R₃ and R₄ are used to designate the appropriate equilibrium distances of C-N, N-N, C-H (1-5 or 2-6) and C-H (1-7 or 2-8), respectively.

are $R_1(C=N) = 127$ pm, $R_2(N-N) = 141$ pm, $R_3 = R_4(C-H) = 109.2$ pm, $\angle CNN = 109^\circ$, $\angle HCH = 132^\circ$.

SYMMETRY COORDINATES

Figure 1 along with its legend defines a suitable set of valence coordinates or the molecular vibrations of the model considered. The normal modes of vibration are distributed among the different symmetry species of the C_{2h} point group according to

$$\Gamma = 7A_{g} + 3A_{u} + 2B_{g} + 6B_{u}$$

A complete set of independent symmetry coordinates was constructed from the valence coordinates as given below:

Species A_e

$$S_1 = 2^{-\frac{1}{2}}(r_1 + r_1'), \quad S_2 = r_2, \quad S_3 = 2^{-\frac{1}{2}}(r_3 + r_3'), \quad S_4 = 2^{-\frac{1}{2}}(r_4 + r_4'),$$

$$S_5 = (R_1 R_2/2)^{\frac{1}{2}}(\alpha + \alpha'), \quad S_6 = (R_1 R_3/2)^{\frac{1}{2}}(\beta_1 + \beta_1'), \quad S_7 = (R_1 R_4/2)^{\frac{1}{2}}(\beta_2 + \beta_2').$$

Species A_u

$$S_1 = [R_1(R_3R_4)^{\frac{1}{2}}/2]^{\frac{1}{2}}(\gamma + \gamma'), \quad S_2 = (R_2R_3)^{\frac{1}{2}}(\tau_1 + \tau_1'), \quad S_3 = R_1\tau_2,$$

Species Bg

$$S_1 = [R_1(R_3R_4)^{\frac{1}{2}}/2]^{\frac{1}{2}}(\gamma - \gamma'), \quad S_2 = (R_2R_3)^{\frac{1}{2}}(\tau_1 - \tau_1').$$

Species B_{u}

$$\begin{split} S_1 &= 2^{-\frac{1}{2}}(r_1 - r_1'), \quad S_2 &= 2^{-\frac{1}{2}}(r_3 - r_3'), \quad S_3 &= 2^{-\frac{1}{2}}(r_4 - r_4'), \\ S_4 &= (R_1 R_2/2)^{\frac{1}{2}}(\alpha - \alpha'), \quad S_5 &= (R_1 R_3/2)^{\frac{1}{2}}(\beta_1 - \beta_1'), \\ S_6 &= (R_1 R_4/2)^{\frac{1}{2}}(\beta_2 - \beta_2'). \end{split}$$

TABLE 1

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Species A_{g}							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8.570							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.836	3.573						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-0.041	0.023	4.976					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-0.032	0.007	0.040	4.976				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.378	0.214	-0.002	0.007	1.222			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.053	0.017	-0.008	0.014	-0.003	0.716		
Species A_u Species B_g 0.119 0.110 -0.014 0.122 0.001 -0.061 0.0285 Species B_u 9.623 -0.036 4.932 -0.036 0.003 0.000 -0.003 0.000 0.734 0.226 0.006 0.001 0.000 0.226 0.006	0.254	0.051	0.013	-0.003	0.007	0.286	0.744	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Species A _u				Species B_g			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.119				0.110			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-0.014	0.122			0.004	0.0853		
Species B_u 9.623 -0.036 4.932 -0.036 0.029 4.932 0.000 -0.003 0.003 0.734 0.226 0.001 0.006 0.000 0.763 0.226 0.006 0.001 0.000 0.264 0.763	0.001	-0.001	0.0285					
9.623 -0.036 4.932 -0.036 0.029 4.932 0.000 -0.003 0.003 0.734 0.226 0.001 0.006 0.000 0.763 0.226 0.006 0.001 0.000 0.264 0.763	Species B_{u}							
0.036 4.932 0.036 0.029 4.932 0.000 0.003 0.003 0.734 0.226 0.001 0.006 0.000 0.763 0.226 0.006 0.001 0.000 0.763	9.623							
0.036 0.029 4.932 0.000 0.003 0.003 0.734 0.226 0.001 0.006 0.000 0.763 0.226 0.006 0.001 0.000 0.264 0.763	-0.036	4.932						
0.000-0.0030.0030.7340.2260.0010.0060.0000.7630.2260.0060.0010.0000.2640.763	0.036	0.029	4.932					
0.226 0.001 0.006 0.000 0.763 0.226 0.006 0.001 0.000 0.264 0.763	0.000	-0.003	0.003	0.734				
0.226 0.006 0.001 0.000 0.264 0.763	0.226	0.001	0.006	0.000	0.763			
	0.226	0.006	0.001	0.000	0.264	0.763		

symmetry force constants (hNm^{-1}) for methanal azine

TABLE 2

POTENTIAL ENERGY DISTRIBUTION TERMS* FOR $C_2H_4N_2$ (wavenumbers in cm⁻¹)

Species .	A _s	Species 1	Bg
3092	$50r_4 + 50r_3$	1016	81 ₂ /
2958	$49r_{3} + 49r_{4}$	366	84T1
1615	$55r_1 + 24\beta_1$		
1413	$45\beta_2 + 22\alpha + 20r_1$	- · ·	_
1198	$55\beta_1 + 29r_2 + 24r_1 + 21\beta_2$	Species I	Bu
851	$44r_2 + 40\beta_2 + 36\beta_1$	3078	$50r_3 + 50r_4$
605	$48\alpha + 29r_2$	2943	$49r_3 + 49r_4$
	-	1637	68r ₁
- ·	4	1397.3	$32r_1 + 22\beta_1 + 22\beta_2$
Species .	A _u	1166.1	$73\beta_1 + 73\beta_2$
1019.5	$88\gamma + 23\tau_1$	380	95a
380	78r1		
115	9972		

* Terms below 20 are omitted.

HARMONIC FORCE FIELD

A harmonic force field for methanal azine was produced from an initial approximate valence force field through several steps of iteration. It seems not to be of interest to report any details of these calculations here. The final force field in terms of the symmetry force constants is given in Table 1. The force constants were adjusted so as to reproduce exactly the vibrational wavenumbers for $C_2H_4N_2$ shown in Table 2. These values are observed vapour wavenumbers¹ along with experimental data for the solid state corrected with estimated gas-solid frequency shifts. The present calculations confirm the vibrational assignment proposed in the cited work¹ except for a detail in species A_n . The proposed assignment¹ contains the solid-phase wavenumber $v_9 = 679$ cm⁻¹, which is estimated to correspond to about 665 cm^{-1} in the vapour phase. All our attempts failed to get a value with this order of magnitude within reasonable ranges of force constants. It should be born in mind that the previous assignment¹ is rather tentative, and it was explicitly pointed out that the assignment of the wavenumbers v_7 , v_9 , v_{10} , v_{11} and v_{12} was particularly difficult. The value for v_9 is among the most uncertain ones. Hence the discrepancy described with our calculations should not be surprising. In the final set of vibrational wavenumbers we have taken $v_0 = 380$ cm^{-1} . This value is used twice (as v_9 and v_{18}).

Perhaps the most interesting features of the force field for the molecule in question are the N-N and C=N stretching force constants. From our final force field one obtains $f(N-N) = 3.573 \text{ hNm}^{-1}$ and $f(C=N) = 9.096 \text{ hNm}^{-1}$.

Table 2 shows the potential energy distribution^{4, 5} defined in terms of usual symbols by

 $X_{ik} = 100 F_{ii} L_{ik}^2 / \lambda_k.$

ISOTOPIC WAVENUMBERS

Table 3 shows the calculated vibrational wavenumbers for $C_2D_4N_2$ along with the experimental data¹. The solid-phase wavenumbers were tentatively corrected for vapour-solid wavenumber shifts as in the case of $C_2H_4N_2$. It is found to be a generally satisfactory agreement between the calculated and experimental values considering the tentative nature of the assignment proposed previously¹. In particular it is noticed that the questionable value of $v_6 = 814 \text{ cm}^{-1}$ is not confirmed by the present calculations. We must also question the assignment of 640 cm⁻¹ (649 cm⁻¹ in the solid phase) to v_9 on the same grounds as it was done for the $C_2H_4N_2$ compound.

The vibrational wavenumbers were also calculated for the three isotopic molecules $C_2H_2D_2N_2$. The results are collected in Table 4. In view of the uncertainties in the assignments discussed above one cannot expect these values to reproduce quantitatively the vibrational wavenumbers of the partially deuterated

TABLE 3

Species	No.	Calc.	Expt. ^a	Species	No.	Calc.	Expt. ^a	
	1	2338	2309	 B.	11	793	795	
-	2	2151	2189		12	297	_	
	3	1522	1560					
	4	1178	1205	B_{u}	13	2322	2310	
	5	1029	1052		14	2147	2182	
	6	687	(814?)		15	1552	1580	
	7	556			16	1047	1036	
A.,	8	800	816		17	930	962	
-	9	274	(640?)		18	327		
	10	105	`_ ´					

VIBRATIONAL WAVENUMBERS (cm⁻¹) FOR PERDEUTEROMETHANAL AZINE, $C_2D_4N_2$

^a Wavenumbers from vapour spectra and those from the solid corrected with estimated vapoursolid frequency shifts.

TABLE 4

calculated vibrational wavenumbers (cm $^{-1})$ for partially deuterated methanal azine, $C_2 H_2 D_2 N_2$

	$H_2CN_2CD_2$ (C _s)	$HDCN_2CHD$ (C _s)	$HDCN_2CDH(C_{2h})$
in-plane	3085	3026	3033 (A _e)
•	2951	3024	$3018 (B_n)$
	2330	2235	2235 (A_g)
	2149	2231	2228 (B _u)
	1627	1588	$1588 (B_{\rm u})$
	1538	1560	1556 (A _g)
	1402	1346	1367 (A _g)
	1209	1282	$1311 (B_u)$
	1065	1127	1079 (A.)
	1026	972	970 (B _u)
	745	742	742 $(A_{\rm g})$
	583	581	593 (A.)
	351	350	$351(B_{n})$
out-of-plane	1018	951	887 (A _u)
-	797	884	880 (B.)
	372	325	327 (B _e)
	287	317	319 (A _u)
	110	110	113 (A_n)

molecules in question. They do not give a sufficiently firm basis for definite assignments of the observed wavenumbers¹ to the different isotopic species. Nevertheless, the present calculations are believed to give a fairly good qualitative picture of the isotopic shifts.

In particular the present calculations reproduce correctly the trends of isotopic shifts for C₂H₄N₂, C₂H₂D₂N₂ and C₂D₄N₂ for the three bands discussed in the experimental work¹. (i) The bands of wavenumbers from 3235 through 3170 to 3140 cm⁻¹ are assigned to $v_3 + v_{15}$ in C₂H₄N₂, C₂H₂D₂N₂ and C₂D₄N₂, respectively¹, and not to CH stretching modes as previously⁶. This revised assignment is confirmed by the present calculations, from which the corresponding values are 3252, (3165, 3148, 3144) and 3074 cm⁻¹, where the figures in parentheses pertain to H₂CN₂CD₂ (C_s), HDCN₂CHD (C_s) and HDCN₂CDH (C_{2h}), respectively; cf. Table 4. (ii) For the C=N stretching B_g mode (v_{15}) the experimental values from 1637 through 1608 to 1581 cm⁻¹ are reported¹. The present calculations give 1637, (1627, 1588, 1588) and 1552 cm⁻¹. (iii) Finally the $v_8 + v_{11}$ combination band is reported to be 2033, 1853 and 1615 cm^{-1} for the three isotopic species in question¹. From the present calculations one obtains 2035.5, (1815, 1835, 1767) and 1593 cm^{-1} , respectively. In none of the three cases (i)-(iii) is the agreement quantitative enough to allow decisive conclusions about assignments to the three different $C_2H_2D_2N_2$ molecules.

MEAN AMPLITUDES OF VIBRATION AND PERPENDICULAR AMPLITUDE CORRECTION COEFFICIENTS

The force field developed was used to calculate the mean amplitudes of vibration $(u \text{ values})^3$ and perpendicular amplitude correction coefficients $(K \text{ values})^3$. These quantities are of great interest in modern gas electron diffraction⁷. The results for all the types of bonded and nonbonded interatomic distances at the temperatures absolute zero and 298 K are given in Table 5 ($C_2H_4N_2$) and Table 6 ($C_2D_4N_2$). In Table 5 the calculated interatomic separations (in pm) are included in parentheses and are supposed to be helpful for identifications of the different distance types.

CORIOLIS COUPLING COEFFICIENTS

The methanal azine molecule possesses several kinds of Coriolis coupling. Table 7 shows the calculated ζ values of the $A_g \times B_g$ and $A_u \times B_u$ types, respectively. In both cases there are nonvanishing Coriolis coefficients with respect to the two in-plane Cartesian axes. The X and Y axes of Fig. 1 were rotated into b and a so as to coincide with the principal axes with respect to the moments of inertia. We have chosen as usual $I_b > I_a$.

TABLE 5

Distance	(Equil.)	u(0K)	u(298)	K(0)	K(298)
C ₁ -H ₅	(109.2)	7.76	7.76	1.91	2.21
C ₁ -H ₇	(109.2)	7.76	7.76	2.30	3.31
C-N	(127.0)	4.11	4.12	0.54	1.53
N-N	(141.0)	5.04	5.14	0.14	0.17
$\mathbf{C} \cdots \mathbf{N}$	(218.3)	5.85	6.28	0.28	0.84
$\mathbf{C}\cdots\mathbf{C}$	(328.2)	5.73	5.97	0.02	0.02
$N_3 \cdots H_5$	(198.3)	9.97	10.00	1.39	2.33
$N_3 \cdots H_7$	(198.3)	9.86	9.89	1.56	3.54
$N_4 \cdots H_5$	(318.7)	9.63	9.81	0.75	1.28
$N_4 \cdots H_7$	(219.9)	13.25	13.83	1.45	3.28
$C_2 \cdots H_5$	(415.8)	10.56	10.82	0.43	0.51
$C_2 \cdots H_7$	(346.0)	13.11	13.61	0.53	0.83
$H_5 \cdots H_7$	(199.5)	11.67	11.68	2.78	3.85
$H_5 \cdots H_8$	(411.0)	17.19	18.09	0.89	1.22
$H_5 \cdots H_6$	(511.8)	13.02	13.14	0.64	0.75
$H_7 \cdots H_8$	(394.3)	16.10	16.34	0.76	0.95

MEAN AMPLITUDES OF VIBRATION (u) AND PERPENDICULAR AMPLITUDE CORRECTION COEFFICIENTS (K) FOR METHANAL AZINE; pm UNITS

TABLE 6

MEAN AMPLITUDES OF VIBRATION (u) AND PERPENDICULAR AMPLITUDE CORRECTION COEFFICIENTS (K) FOR PERDEUTEROMETHANAL AZINE; pm UNITS

Distance	u(0K)	u(298)	K(0)	K(298)	
C ₁ -D ₅	6.64	6.64	1.31	1.68	
$C_1 - D_7$	6.64	6.64	1.56	2.66	
C-N	4.11	4.11	0.54	1.58	
N-N	5.03	5.13	0.21	0.29	
$C \cdots N$	5.79	6.26	0.28	0.87	
$\mathbf{c}\cdots\mathbf{c}$	5.68	5.95	0.04	0.04	
$N_3 \cdots D_5$	8.59	8.68	1.05	2.08	
$N_3 \cdots D_7$	8.47	8.56	1.14	3.20	
$N_4 \cdots D_5$	8.48	8.71	0.53	1.09	
$N_1 \cdots D_7$	11.44	12.37	1.09	3.02	
$C_2 \cdots D_5$	9.24	.9.63	0.27	0.37	
$C_2 \cdots D_7$	11.32	12.14	0.34	0.66	
$D_5 \cdots D_7$	9.83	9.85	1.79	2.98	
$D_5 \cdots D_8$	14.64	16.06	0.59	1.01	
$D_5 \cdots D_6$	11.11	11.33	0.36	0.45	
$D_7 \cdots D_8$	13.64	14.17	0.38	0.50	

$A_g imes B_g$			$A_u imes B_u$		
	$\zeta^{a}(i,j)$	ζ ^ь (<i>i</i> , <i>j</i>)		ζ ^a (i, j)	ζ ^ь (i, j)
(1, 11)	0.781	-0.491	(8, 13)	-0.777	0.489
(2, 11)	-0.112	0.464	(9, 13)	0.265	0.252
(3, 11)	0.412	0.574	(10, 13)	0.153	-0.019
(4, 11)	-0.185	-0.453	(8, 14)	0.114	0.464
(5, 11)	-0.300	-0.078	(9, 14)	0.785	0.365
(6, 11)	0.286	0.046	(10, 14)	-0.140	0.044
(7, 11)	0.035	0.033	(8, 15)	-0.385	-0.589
(1, 12)	0.239	0.210	(9, 15)	-0.211	0.345
(2, 12)	0.666	-0.297	(10, 15)	-0.333	-0.480
(3, 12)	0.048	-0.378	(8, 16)	0.291	0.438
(4, 12)	-0.413	0.158	(9, 16)	0.280	-0.091
(5, 12)	0.001	0.681	(10, 16)	-0.345	-0.720
(6, 12)	0.563	-0.351	(8, 17)	0.382	-0.077
(7, 12)	0.098	0.335	(9, 17)	0.289	0.768
			(10, 17)	0.411	0.073
			(8, 18)	-0.067	-0.032
			(9, 18)	0.326	-0.294
			(10, 18)	0.747	—0.49 4

coriolis coupling coefficients of types $A_g \times B_g$ and $A_u \times B_u$ for methanal azine

One Coriolis coupling coefficient was observed¹ for $C_2H_4N_2$, viz. $|\zeta^a(8,17)| = 0.49 \pm 0.05$. The calculated value of 0.38_2 falls outside the reported limits of experimental error, but it does have the right order of magnitude. When taking into account the general sensitivity of Coriolis coupling coefficients with changes in force constants we feel that the agreement between the theory and experiment is satisfactory in the present case.

NOTE

In this paper the modern SI units are applied. (1 pm = 10^{-2} Å, 1 hNm⁻¹ = 1 mdyne Å⁻¹ = 10^{5} dyne cm⁻¹.)

ACKNOWLEDGMENTS

One of us (J.F.O.) is grateful to National Research Council of Canada for research support, and B. N. C. expresses her gratitude to Norges Almenviten skapelige Forskningsråd for financial support.

TABLE 7

REFERENCES

- 1 J. F. OGILVIE AND K. C. COLE, Spectrochim. Acta, 27A (1971) 877.
- 2 J. H. MEAL AND S. R. POLO, J. Chem. Phys., 24 (1956) 1119.
- 3 S. J. CYVIN, Molecular Vibrations and Mean Square Amplitudes, Universitetsforlaget, Oslo, and Elsevier, Amsterdam, 1968.
- 4 Y. MORINO AND K. KUCHITSU, J. Chem. Phys., 20 (1952) 1809.
- 5 K. NAKAMOTO, Infrared Spectra of Inorganic and Coordination Compounds, 2nd Edition, Wiley-Interscience, New York, 1970.
- 6 J. F. OGILVIE, Chem. Commun., (1965) 359.
- 7 K. KUCHITSU AND S. J. CYVIN, in S. J. CYVIN (editor), Molecular Structures and Vibrations, Elsevier, Amsterdam, 1972, p. 183.