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ABSTRACT

The influence of the form of the internuclear potential function on the resulting
! ¥-state diatomic vibrational wavefunctions is discussed with specific reference to the
Morse, Lennard-Jones, and Dunham potentials for HCL. In an investigation of the effects
on the corresponding matrix elements, the recent iterative methods for the derivation of
analytic matrix elements for the Dunham oscillator are reviewed and extended. The
resulting vibrational matrix elements are then computed for HCl and compared with the
corresponding numerical results for the Dunham, Morse and R.K.R. potentials. Explicit
rotational corrections to the various Dunham vibrational elements are derived for the
first few vibrational levels, and applied in the final section to a detailed analysis of the
experimental spectral intensity data for the hydrogen halides. The correspending dipole-
moment functions are obtained and their systematic trends discussed.
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L INTRODUCTION

Our present experimental knowledge of diatomic molecules is quite
sophisticated in both its scope and its precision. For instance, numerous
unstable radicals [1] and exotic species known only to spectroscopists have
remarkably well-determined molecular parameters [2], while recent
microwave measurements on the hydrogen halides have led to the deter-
mination of the equilibrium internuclear separation with uncertainties of
the order of nuclear dimensions [3]. On the theoretical side, ab initio
calculations are now possible which, for smaller molecules, notably hydrogen
[4—6], permit calculation of dissociation energies, equilibrium internuclear
separations, etc., to an accuracy [7] of one part in 10°. Furthermore,
extremely small effects such as differences in the potential energy within
the Born—Oppenheimer, adiabatic and non-adiabatic frameworks, relativistic
corrections etc., [4—6], can be computed with considerable accuracy and
enable a direct comparison between theory and experiment. However,
despite these spectacular successes, further work is necessary especially in
the area of spectral line intensities, where sophisticated techniques have
recently improved the accuracy of the experimental data available [8—10].

In the present paper we are concerned primarily with the influence of
the internuclear potential on the calculation of accurate matrix elements
necessary for analysis of vibration—rotation (or pure rotation) line intensities.
After a brief discussion of some of the more widely used potentials and
associated wavefunctions, we derive matrix elements appropriate to a
generalized (Dunham) potential. These are the most accurate analytic results
to date and are computed in detail for HCI to enable comparison with the
numerical results of previous workers [10, 11], and to illustrate the accuracy
attained. Finally, we indicate how these matrix elements may be used to
make vibration—rotation corrections to molecular parameters, and to deduce
the dipole-moment function from experimental spectral intensities. In the
latter regard, we analyze the available experimental data for the hydrogen
halides and calculate the corresponding dipole-moment functions.

II. POTENTIALS AND WAVEFUNCTIONS

A Potential energy functions
The prototype of all potential functions for bound states of diatomic
molecules is the harmonic oscillator potential

2
V(x)/he =% 2% = gox? 1)
where x is the reduced displacement from equilibrium, x = (R — R_)/R_, and
a, is related to the curvature of the potential at the minimum. In terms of
the standard spectroscopic vibrational and rotational constants [2] (in units
of cm™), @, = w?/AB,. Although this potential implies an infinite dissociation
energy, the simplicity of the resulting wavefunctions and matrix elements



has led to its widespread adoption for approximate theoretical calculations.
However, for more refined work, a more flexible potential is obviously
required.

Numerous alternative potentials have been proposed, differing both in
their number of adjustable parameters and in their complexity. In the
following, we discuss briefly the three most commonly used, namely the
Dunham [12], the Morse [13] and the Lennard-Jones [14]. For a more
complete discussion of internuclear functions, the reader is referred to the
excellent review articles [15] and to two recent books [16].

Dunham, in a systematic generalization of the harmonic oscillator results
(including rotational effects), considered a potential of the form

V(x)/he = apx® (1 + 2 e, x?) + B J(J + 1)/(1 + x)? (2)
i=1

Employing the W.K.B. technique, he obtained the vibration—rotation energy
levels
=2 Y, @+ I+ DY 3)
4j=0

where the Y;; are functions of w, B, and the potential constants, a;, without
explicitly solving for wavefunctions. This theory is used almost exclusively
for the analysis of high-resolution frequency spectra from which one can
deduce the q; and thereby extract information about the potential. (If
sufficient accuracy is warranted, one can take account of deviations resulting
from the breakdown of the Born—Oppenheimer approximation assumed in
the Dunham theory while retaining the form of eqn. (3) [17].) Recently,
analytic wavefunctions appropriate to the potential in eqn. (2) have been
derived [18]; their derivation and use in calculating vibration—rotation
matrix elements are discussed in subsequent sections. Since the flexible
Dunham potential is obtained directly from experimental frequency data, it
can evidently be quite accurate in a limited region around the minimum.
When truncated, however, this potential ultimately diverges for large x
(positively or negatively, depending on the sign of the coefficient of the
highest power term) and wavefunctions deduced from it are hence not valid
for describing high vibrational states. It has been pointed out, however,
that turning points obtained by inverting Dunham’s series are applicable to
the dissociation limit {19]. In an attempt to circumvent the drawback of
this divergence, many model potentials having the correct asymptotic
behaviour have been proposed.

One of the earliest and most widely used model potentials is due to Morse
[13]

V(x)/hc= 2, [1—e ]2 (4)

Here, 2, (cm™) corresponds to the depth of the potential well (approximately
the dissociation energy) and the (vibrational) energy levels are given by

E,~w, v+ —wx, (v+3) (5)

v
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where w_ = a/nR_ (D .h/2Mc)t, w x, = w?/4 D, and M is the reduced
mass of the molecule; a is thus related to the anharmonicity parameter
w.x, by the equation

= (w % /B )¥

(Equation (5) is also valid for other potential functions, so that the good-
ness of fit of the measured energy levels does not in itself constitute a
proof of the applicability of the Morse potential.)

For the rotationless problem, the Schrodinger equation can be solved
exactly for the Morse potential, and the resulting wavefunctions expressed
in closed form; these are discussed briefly in the following section.
Unfortunately, the inclusion of rotational effects and the calculation of
matrix elements both lead to expressions which are intractable for
convenient application [20].

In order to facilitate comparison, eqn. (4) can be written in the Dunham
form

Vix)/he = apx®> (1 + 2 ax?)
i=1

where a, = 2 _a?, and

2i+2_2 A i .
ai=(T_T_-2—)!— a(—1), i=1,2,3.... (6)

For HCI this comparison is presented in Table 1 and the corresponding
potential illustrated in Fig. 1. As can be seen, the truncation of the
Dunham potential, in contradistinction to the recursion relation (egn. (6)),
does not alter the potential drastically in the vicinity of the minimum;
however, for large x (x > 1), this distinction is crucial and accounts for
the better representation of the actual potential by the Morse form.

Another popular model potential due to Lennard-Jones [14] can be
written '

Vix)he = 2, [1— 1/ + x)"]? (7

where n = 6 in the usual (6—12) formulation. It is interesting to note that
for n = 1, eqn. (7) is sometimes referred to as the Kratzer potential and was
one of the first potentials for which the exact solution of the radial
Schrodinger equation was carried out [22]. For n # 1, however, this is not
possible although several approximate schemes have been proposed [23].

Again, to enable direct comparison with the previous potentials, eqn. (7)
can be written in the Dunham form where

ao =n’a2,
21y [(n+i+ 1) (n+i+ 1) ._
i n(i+ 2)![ (2n)! o n! ]’ i=1,2,3 ... . (8)

This can be simplified for a given value of n and the results forn =1, 3 and



TABLE 1

Potential constants of HCl: V(x)/hc=a,x* (1 + Z a,oc")
=1

Dunham? MorseP? Lennard-Jones® Lennard-Jones®

n=3 n=6

a, (cm™) 211129 209950 338040 1352160

a, —2.364257 —2.364257 —4 —7

a, 3.66290 3.26067 10.6667 30.91667

a, —4.7063 —3.3039 —23.333 —107.333

a, 5.215 2.691 45.111 318.111

a —5.522 —1.847 —80 —840

a, 8.364 1.100 133 2028

aDerived from data in ref. 21.
bCalculated assuming P, = 37560 cm™ and a = la,| Dunham. The values of ‘a’ corresponding

to the ‘spectroscopic’ or ‘dissociation energy’ bases are 2.23351 or 2.37084 respectively
(cf. section III C).

€Calculated assuming @e = 37560 cm™.
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Fig. 1. Potential energy functions for HCl. M = Morse function (based on experimental
dissociation energy); 3,6 are Lennard-Jones type functions with the specified exponent,
and the broken line is the Dunham function including terms up to a,.

6 are as follows:
n=1 a =9,

g, = (—1) (i+1)
n=3 a=99,

_ (—1) (i+1) (i+3) (i+4) (*+ 17i+ 90)
% 1080
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n=6 a=369,

a; = [(—1) (i+1) (i+ 3) (i+4) (i+ 5) (i+ 6) (i+ 7) (i+ 20)
(i*+ 423+ 743+ 6342i+ 28512)] [3(121)] !

Specific results are also displayed in Table 1 and Fig. 1 for two values of the
exponent n.

Perhaps a brief discussion of the physical basis for the internuclear
potential is useful at this point. The Lennard-Jones model originated from
calculations on uncharged atoms at large separations. Dispersion forces
produce a net attraction with a potential energy proportional to R°.
Corresponding to this induced dipole—induced dipole contribution, there
are also induced dipole—induced quadrupole, induced quadrupole—induced
quadrupole, etc., terms varying as R™%, R™%, etc., the effects of which
combined with more complicated repulsive overlap forces can be conveniently
approximated by a repulsive R™!? term. For actual molecules, however, the
6—12 form may not provide the best fit to experimental data and indeed
many other choices for the exponents along with more drastic modifications
have been employed [15, 16]. On the other hand, the form of the Morse
potential is qualitatively plausible if one considers the Heitler—London
treatment of simple molecular systems (e.g. H,). Exchange effects give rise
to attractive long-range contributions to the potential which vary as e /a0
(ap being the Bohr radius), while coulombic contributions are shorter-range
(~ e 2Rlaa) and repulsive. Although it represents gross over-simplifications
of the highly complex (and not completely understood) intramolecular
forces, it is somewhat remarkable that a Morse potential is applicable even
for some states for which no (substantial) minimum exists. For instance,
Mg., having a nominal bond order of zero and thus being appropriately
described as a van der Waals molecule, has a ground-state potential curve
fitted quite well by the Morse function [24]

V(x) =424 (1 —e™" 10x )2

For Ar, , a potential function derived from non-spectroscopic data [25]
resembles a Lennard-Jones function (with n» = 6). Meager spectroscopic data
[26] available for this molecule (Z,, w_, w %, and estimated B,) indicate
both a form of potential, and the presence of only six vibrational levels
(v = 0—5), consistent with a Morse function (with a = 6, 6.0 = 0.4 levels
are predicted). Both a Lennard-Jones potential and detailed consideration
of the influence of long-range forces lead to the prediction of 9—10
vibrational levels [27], with the last three very near the dissociation limit
and thus difficult to detect experimentally. The true potential function
seems to be intermediate between the Lennard-Jones and Morse curves on
the attractive side, but more repulsive than either of these on the small
separation side (J. F. Ogilvie, unpublished results).

In any case, the Dunham potential (egn. (2)) is, in principle, capable of
representing all analytic potentials to any desired accuracy (over the range



in which it converges) by including sufficient terms in the infinite series. In
subsequent sections, we show explicitly how the higher terms in the potential
(a;, i> 0) affect both the wavefunctions and the corresponding matrix
elements. Furthermore, some generalizations about the magnitudes of the

¢; have been discovered. For many molecules, Calder and Ruedenberg [28]
have shown that a; = —3.22 + 0.09 and a, = 6.49 = 0.75. For hydrides, these
coefficients are somewhat smaller. The magnitudes increase systematically
for the hydrogen halides from a; = 2.25 to —2.53 and a, = 3.49—3.96 for
HF through HI [29], while weakly bound molecules {(ground-state well
depths from 100—1000 cm™!) have markedly larger magnitudes for qa,

(~ —5 to —7) and probably for the higher g; as well.

Before concluding this section, it should be emphasized that even if
several potentials are in good agreement over a specified region and,
furthermore, that if they reproduce the vibration—rotation energy levels
accurately, they may still lead to significantly different wavefunctions and,
consequently, different matrix elements [30]. Precisely for this reason,
matrix elements can provide a sensitive gauge for judging the accuracy of
wavefunctions. This point will be discussed in more detail in Section II1
where matrix elements of HCl are computed utilizing different potentials.

B. Wavefunctions

In this section, we outline the derivation of analytic wavefunctions for
the Dunham oscillator. Because the procedure is iterative, the results can
theoretically be made as accurate as desired; in practice, however, the
algebra becomes quite tedious after five iterations for low vibrational
states (v = 1—5) and sooner for the higher v states.

Here we discuss only vibrational wavefunctions as rotational effects can
be incorporated in a straightforward formal way [18]. The method consists
of a W.K.B.-like transformation of the radial Schrodinger equation

Vo) = exp(— 3 | y(x)ax') (9)
and

Y, (x)=g,(x)¥o(x) (10)
to a pair of coupled, nonlinear differential equations

Yy — 225 Bi [V(x)— Eo] = 0 (11)
and

280 —y) Bl L BT g ) =0 (12)

€

where E, are the (known) Dunham energy levels (eqn. (3)). This set of
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equations may be solved by the power series

y(x)= Eo bx' 13)
£@=2 c,x (14)

in the following manner. First the exact solution for the harmonic oscillator
(V(x)/heB, = vy *x% E, /B, = 2y (v + }) where v = 2B_/w_) is obtained;
then, in the first iteration, one additional term is added to the potential
(V(x)/hcB, = v 2x? (1 + a,x)) while terms higher than a, appearing in the
Dunham energies are neglected; at the same time, the series of egns. (13)
and (14) are truncated according to
b,=0, i=3

(15)
¢ =0, izvt2

Continuing this procedure, for the n'® iteration we obtain the wavefunction
for the potential

Vix)/heB, =7 %x* (1 + a;x + ax* + ... +a,x") (16)
expressed in terms of the polynomial series truncated according to

., = j >
b; 0, izn+2 an
¢, =0, iznt+v+1
The results for the first four vibrational wavefunctions correct through five
iterations are listed in Table 2. Additional results up to v = 10 correct through

three iterations have been tabulated elsewhere [18] *.

*The expression for g, is in error in ref. 18; the small corrections to the even powers
of x should read

6

% 43022833 a? — 2682233 a,a, + 91539 03]

+ Q[ 02319y 1243809 | 45717,,)
+2L,-[40767533 ;2249793 , 613204, ] "
4Dy [— 4902861 24158 [\ 11415, T
+ %7: 116]?6253 als_ 45215 a,a, + 2859 as] x®

T T -

3[_263 ,. 83

telTeEt -4—“:":"“3]"”



TABLE 2
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TABLE 2 CONTINUED
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TABLE 2 CONTINUED
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TABLE 2 CONTINUED
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The role of the g, -polynomials in the calculation of analytic matrix
elements is developed in detail in the following section. As discussed
previously [18], the accuracy of the wavefunctions after three iterations
is at least as great as that associated with the standard numerical R.K.R.
procedure. The results listed in Table 2 are consequently even more
accurate and, indeed reproduce the (experimental) energy levels to the
accuracy of the Born—Oppenheimer approximation.

The first five vibrational wavefunctions are plotted for HCI ir: figures 2—6

PRGNS § | FTIERINIY Pt § PRy GEpE e |

along with the harmonic oscillator and Morse wavefunctions. The harmonic
oscillator wavefunctions may of course be considered to be special cases of

w v=0

M———/\ -
HO’/\ =

e —— - . + P et —

0s -03 o2 o1 ) ot 02 03 04 05

Fig. 2. Normalised vibrational wavefunctions for v = 0. H.O. = harmonic oscillator,

M = Morse, and H.T.S. = anharmonic oscillator wavefunctions based on Dunham potential
function including terms up to a,.

-04q Q3 -c2 =01 ] o]} 02 Qa3 04 o5

Fig. 3. Normalised vibrational wavefunctions for v = 1. H.O. = harmonic oscillator,
M = Morse, and H.T.S. = anharmonic oscillator wavefunction based on Dunham potential
function including terms up to a,.

fu v=2 -

iTs W
M =
HO X
Tc4q ~03 -o2 ~01 [+] O Q2 03 o4 _0.5

Fig. 4. Normal vibrational wavefunctions for v = 2. H.O. = harmonic oscillator,

M = Morse, and H.T.S. = anharmonic oscillator wavefunction based on Dunham potential
function including terms up to a,.
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T04 03 02 "0 o o 02 o3 o4 os

Fig. 5. Normalised vibrational wavefunctions for v = 3. H.O. = harmonic oscillator,
M = Morse, and H.T.S. = anharmonic oscillator wavefunction based on Dunham potential
function including terms up to a..

o4 a3 02 o1 o or 02 03 G4 as

Fig. 6. Normalised vibrational wavefunctions for v = 4. H.O. harmonic oscillator,
M = Morse, and H.T.S. = anharmonic oscillator wavefunction based on Dunham potential
function including terms up to a,.

the solutions of eqns. (11) and (12) in which a; = 0 for i > 0. As mentioned
previously, the Morse functions can be expressed in closed form [11]

V,(x)=N,e ¥ yk-2v-D2 ], (y) (18)
where
w 49

y=ke*™ k= £ or e,
wexe o"e

-5 (1)yYv'rE—uv)yv7
L,o)=2 =N TE—v—)j’

_ [atk—2v—1)1F .,
Nu—[ T —2) ] -1y, (19)

such that [y (x) ¢ (x)dx =5 .

We note that approximate Morse wavefunctions (and matrix elements)
may be obtained from the accurate Dunham results through the use of the
recursion relation (eqn. (6)). The effects of the slight differences in wave-
functions on the calculation of matrix elements will be considered in detail
in the next section.
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III. MATRIX ELEMENTS

A. Introduction

For many problems in molecular physics (e.g. vibration—rotation line
intensities, Franck—Condon factors, molecular beam studies, rotational
dependence of molecular parameters, deviation from Born—Oppenheimer
behaviour, electron diffraction studies, etc.), explicit expressions for radial
matrix elements of various analytic operators are desirable. If very great
accuracy is not required, simple harmonic oscillator wavefunctions or
anharmonic (cubic potential) wavefunctions may be used to calculate
matrix elements. These, in general, give reasonable results for Av =1
elements; however, they fail noticeably for Av = 2 or higher. To determine
these overtone matrix elements or if higher accuracy is required, one must
employ wavefunctions deduced from a more representative intramolecular
potential. Heretofore, one had three main options: firstly to use electronic
computers and to calculate required matrix elements numerically [10, 11,
30]; secondly to use the Morse potential (or some similar solvable model
potential) and the resulting closed-form Morse wavefunctions to deduce
matrix elements [20]}; thirdly to use harmonic-oscillator wavefunctions and
to treat the corrections introduced by mechanical anharmonicities via
perturbation theory [9, 31]. While the first method leads to accurate
results, these are of limited applicability since matrix elements must be
determined individually for each operator and for each molecular system.
Furthermore, matrix elements calculated with Morse wavefunctions prove
to be too cumbersome for practical use. Even in a simplified approximate
form, these have never gained widespread acceptance. The perturbation
approach has been carried out through fourth-order (keeping the a; term in
the potential) for the fundamental and first three overtone bands [9, 31].
To obtain results of comparable accuracy for other matrix elements, or
more accurate expressions for these elements, fifth and/or higher-order
perturbation theory with its concomitant complexities is mandatory.

In an attempt to circumvent the above shortcomings, alternative methods
have recently been developed whereby matrix elements can be determined
in a relatively straightforward manner to the accuracy of the Dunham theory
(ultimately to the accuracy of the Born—Oppenheimer approximation).
These methods have been described elsewhere [18, 32] so we confine
ourselves here merely to a cursory review and a complete listing of the most
accurate results obtained to date. In the following, we first consider
expectation values, then matrix elements off-diagonal in v but diagonal in J,
and finally, the most general case of matrix elements off-diagonal in both
vand J.

B. Expectation values
Two different approaches have been formulated for the calculation of
expectation values within the Dunham framework [18, 32]. Assuming a
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potential of the form
Vi, - JJ+ 1
h(c’;;”=7 x2(1+a,x+a2x2+...)+-(iH——x—)), (20)

=y 22 (l+axtax®+ ... )+JJ+1)1—2x + 3x%...)
=y 4 JN)x,2 (1 + ay(J)xy + ax(x,? .. )

+ constant (J),

where the J-dependent parameters are listed in Table 3, one can use the
defining equations for the g, functions (see eqn. (10)) in order to reduce
the problem of finding expectation values to one of calculating ground-state
expectation values of powers of x. That is,

(OJ1[g57 (x,)1%€ (x; + v?B[1 — 3vy*B(1 + a,/2)]110)
(OJ1[g37 (x,)1°10D

where g =J(J + 1). The function ¢ (x) is assumed to be an algebraic operator,
and the normalization factor for the g,, function has been explicitly
included. The g-dependent terms in the argument of ¢ (x) arise from the fact
that the integral is taken about an equilibrium position of x, shifted from
that of the non-rotating case; i.e. x; = x — v?g[1 — 3v?8(1 + @,/2)]. The

8% (x ;) functions are identical to g, (x) except that the J-dependent potential
constants listed in Table 3 are used.

Ground-state expectation values have been worked out previously by
Herman and Short [33] using a novel perturbation approach. However, as
discussed in ref. 18, one can obtain ground-state expectation values of x}
in terms of those for x’;* and x’ via a recursive technique. Utilizing the
identity

OJlxi! y(x;)] O = (n — 1)O0J1x5 20> (22)

with the accurate expression for y(x,) (Table 2), one can conmstently (with
respect to powers of v) reduce powers of x; higher than x!. The following
expression accurate through aj (@.a4, alas, . - ., as) is thus obtained

wdle@)lvdy = (21)

2

(Odx1|0d) = \{ —2@e+n— [(12 + 61+ 8)as

2
. (21 + 141+ 17

5 )a? — (21 + 131 + 16)a,a, ]

3 3
—:]!_E [(13 +12P + 441 + 48)a5—(5l + 59 + 2061 + 200)a2a3

2
(3513 + 425P + 15141 + 1392) 2 ( 5P + 6112 + 2291 + 230)
+ a;a; — 144

8 2 2
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TABLE 3

J-DEPENDENT POTENTIAL CONSTANTS

Xy =X - 728 [} - 3728

-3

v(3) = v [: - %- 28 (1 + a,)

a;(3)

az(J)

az(d)

a,(J)

ag(J)

+3y8

o4

42 (15 2
(ir 4

15 25
-a2+Tal+T]]

ay + 728[4 (a2 - 1) —~3a1 (1 + al)]

2 1

(—2—7— a3 - 24a1az + 10a3 + 27a2

2 _ 200, + 332, + 32]

32+Y28 Ei (a3 +1) - 3a, (1 + al)]

52 (3 a2, -

2
a3 + Y8 [E (34

37482

34 + YZB [? (35

g9 .2

5ty 8 [§ (a

[i 2193 -

15

2
5 234 - 2a2 + 534 + Qa]_a2 - 10a3 + 7a2 - 10]

13

~1) - 3a, (1+a1)]

9ala4 - 2aza3 + 7a5 + 9ala3 - 12a4 + 7a3 + 14)
+1) - 33, (1+ ali]'

63

- a3 - Gaza4 + 2836 + 27a1a4 - 4235 + 2134]

-1)-- 3ag (1 + al)]



TABLE

a (J)

3

CONTINUED

42 [a 2
3vy'B (—2- 2:112%5 - 12a1a5 - 2a2a5 + 12a7 + Qala5 - 16a6 + 7a5 + 24}

a, + ¥28 [zn + 3)(a,, + (- 1" - 3, (1+ ali]

+ Order 7482

19
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TABLE 4

GROUND STATE EXPECTATION VALUES*

]
—t

<03 ]xJ 03>

2
1 _ 3 ¥ (33 .3
<0d | X3 |03 >= - IN™Y- 3 (—-—2 ay - 31a.£a2 + ]5a3}

3
Y _ 125855 5 5451 _3 _ 915 2 _ 1683 2

* 18 [ 64 3173 N - TF 233~ 7 3
525

+ 5 ajay + 235&233 - 105a5]

1

2 3
%+_y_ [g’a:]z'%z]*'l' (4185 a2

2
<03 x5 003> 1 16 (32 4

1197 .2 325 105 2
R S L A L T P S 45&4}
<03 | x3]03>= S, 20X (465 .3 1714 0 + 65a
J g8 1Y "6 {4 N 192 3
4
Y. . 119127 5 _ 45507 _3. _ 13551 _2
T 64 [ 2 27 T7 (% -7 33

11827 2
- 43, + 323()a.la4 + 2844a2a3- 1050a5}

3
2.3y (57 2
Y *g [4_31 . 732)

Blw

<03 ] x3 01>

4
Al {45507 4 _ 11827 2 + T1aja,

16 66 21~ "8 13

)

4
5 - 65 3 4517 .3 - 449
<03 | x3]00>= -~ I8 1Y +1l— (——-——-a]+7na1a2~—?—~a3]

999 2
+ -"4— a2 - 180a

5

6 8



TABLE 4 CONTINUED

30865 . .2 . 30107 4179

- Tg o843 * Typ 213y t 1647 353, 8 35_}
4

corlloss B P (BRal o)

5
146121 _4 69741 _2 30107
v 3 ["—15 e I e R B

+

2 3495
280532 - —2—" a4]

* J-dependent potential constants
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Table 5

VIBRATION-ROTATION EXPECTATION VALUES

<vd | X0 | va>=1

1 - 1 Y2 21 _3
<VJIX IVJ>_-_2-a1Y{V+‘2‘]+T EJ(J"’])‘P[-TEI

3
+ %T-[ESQa - h8a2 + Slla1 + QS){V + 1} J(IJ + 1)

<vJ[x2|vJ> Y[v+

3
7

=

- 3213
=g a

(_

2 3
AR [ 2 v
§]+ A [[Fat 2a2] + (152 632)[""2]]

36a1 - 12) {v +

N =

—) JW +1) + {%g_s_al;

-l

2 475 335 _2 5 1
122t a3t v Tak]{" + E]

L 1575 a2a. + 175a.a. + 85

. [631;5

2
<vJ»lx3|vJ>=l’h—[-Z_

a; - 15a, [v+-;—}2] +%~3‘—[Zl{[v + 2) J(J + 1)
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TABLE 5 CONTINUED

v 1 [_ 304437 5

131817 3. _ hh331 _2
+ 1% Iie =3 81 + T ala2 —_3 8183
L0261 2 . 6055 5667 -
- ._8__— alaz + ._.._Z—a]al* + '—2‘—'8283 ]]5535}

1 [_ 627165 _5
3 [ 3 At

239985 3 _ 71595 _2
36 2192 T T8 %493

2
- __E——'alag * Q%;é.aiab + Z%gé'aza3 - '36535][V + %}

69453 5 _ 23265 3 _ 5853 _2
* 5[' 128 217 16 ¥ T T8 %3

4
- é%?g'aiag + Egi.a]ah + i%‘3"32'33 - 6335){“ + %}

+ (6332 - 46a, + hza, + 28) J(J + 1)

2 2
+ IZ(hSa;‘ - 2632 + 30a, + 20) [v + —12—] J({J + l)]

2
+v |- %—(ZBa' +9) J(3+1) ~ %-(Ba1 + 3){v + %} J(J +1)

e

+

1_ (131817 b _ ko261 _2_ . 5667
756 ( 66 1 8 1?27 77 %173
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TABLE 5 CONTINUED

15 {7755 h _ 1663 a2 161 75 _2
[64 1778 %2tz %3t R %

3| 3
g [ g o4

_ 14777 3 | 5667 -
[ 3 a1+ 2 a1a2 1107a3)

l‘

+ v [g—[l%z—saf -%-az+%8'ia1 +38][v+-;—} JU + 1)

3
+ 5 {h35 a Eé_a + 1%2.61 + 14]{v + 1) J + 1)

KB 2 2
+ [ ”513258783 ? + 15351%215 a?az - 158085 a¥a3 - ll_lgﬂ_S_a a
+ H%ﬂa].‘ah + 614731a2a3 - 2202985] [V + ;—] + ‘1%‘ [' 11;?289 ‘13
+ 370485 3 cane.2, 78465 2 8853 ., 3759,

32 192 1?3~ 16 172 I 1% 2 92%3



TABLE 5 CONTINUED

< vd | x® | vd >

3 { 1468069 _5 , 136185 3 _ 2. _ 23765 _ .2
TE'[' 28 21 Y g 213, ~ 381523, 5 2122

5
2303 - 1
Ta1a4 + 1029a2a3 231a5] [v + Z]]

5
Y 1 (4785249 _4 _ 1246797 .2 145417
16 |16 [ 8h 1 g %2 Tz %1%
117281 _2

ag - 19277ah]{v + %]

5
m[:'—z'-ag - 13131,] [v + %]

15(53a, + 15)[v + %}J(J + 1)

3
60(1731 + 3)[v + %) J{J + 1{]

25
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TABLE 6.

OFF-DIAGONAL VIBRATIONAL MATRIX ELEMENTS*

% 2
1 _ 1.2 Y2 (2989 _4
<°"|XJ’”>‘{%]E+%[T31 32}“32[32 ay
1149 2. , 189 2 _
+ 195a-la3 - Z aja, + 5 ag 90a4]]
2 - [ + X (02053, ggaa -35
<0 [ x5 [ 10> =45 Frayrg |- 13p 3533
34 < By 28 (2.2,
<03 x> =5 |2 z- 8 %17 2%
1 3
4 _ (7. 2 2491 3 , 819 _ }
<03 | x5 | 19> = [%} [é—a]y + [- 5 a] + 75 a3, - 133a,
5 N2fis 2 . 5y (680 2
< 0J I X'J l 1d> = [2‘ _4_Y + 16 —4—81 - 6932
E 4 ( 10857 _3 829
<03 | x| 10> = [% [‘2“3'5' ay + - [‘ —g aj + 1506a;3, - Tas]
<0J | ]Igg> =1-a]+l 243 3 _ 1M1, o +ﬁ 189097 _5
*J 712 "zZ(32% 78 1% 3) 78 512, 1
80277 _3 2, 23953 _ 2 1475 _ _ _663
T Teq 3% 782333 + TRpT g3, - o a3 5 azag t ‘0535]]
2 y 3y a% ¥ | 28663 .4 , 3611 .2
<0 lxgl2e =T g 3 - %) tig |- T At T A%
61 1233 _2
tZ a3t Ty - ‘3534]]
2
3 i 3y2 (641 .3, 305 )
<0J | X3 | 23> 7 [ 5 a]Y+ 8 5 8] + 5> 343, 57a3
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TABLE 6 CONTINUED

_ 2
<03 | x5 | 20 =J3_f_ L3y+3% [ﬂa% - 117a2}]
2

- 3
5 _xy [ 215 2,153 ( 5943 3, 1947
<03 | x3 | 29> 7 U8 Y v [‘ 7 i B T LV B 3733]]
i 3
<0J|xglza>=/;_ﬂ 2B [7—2§a12-67a2]]
L.
1 Y23 |1 3a3 3y (303 .4
<03 | x5 [3d> = z la{7 *2 *s8 [’3‘2‘31

3/2 =
<03 | K83 LB [a] v Ly [3a:]3 - 6aa, + 2a3}]

3/2
<0J]x§|3d>= X3 [1—3y[a$+a2}]

3/2 2
4 - V3 993 _3
<0J | x5 | 30> = —y——-[- 6a;y+ _'Zg [— = ay * 72543, - 276a3}]

3/2
<03 | x5 | 30> XB [5~{+%y2 [%?af - 37a2]]

< 0d |

3/2 3
6 Y2 5. 2. 5% 12201 .3 , 4269
xg | 30> = 5 [‘ Y [‘ 32 At 2% ‘5733]]

Ca

2 a 2a
<0J|x]l4\]> I_Z[Q[l(_lq.aa +__3.]+1 [’55'5—35'*"3’%'3?&2
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TABLE 6 CONTINUED

0J |

0d |

03 |

0d |

0J |

13 |

0J |

0d |

03 |

0d |

0d |

0J |

2
_ Y6 1 (5 .2 5 395 _4 2
49> = 15> [7 [Z ay + 32] t (37 ay - 18373,
11 .2
t3qa; -yat 434]]
4J>_12/§ 3, +5 /17 .3_869 . . 411a
=72 2 Ta g T T2 12 3
2/ 5 (20 2
a> = L8 |1 - 2y (B4 + 32,
26 [ 25 5 2 3
4]> = —YT -7 a] + Y [ZOa] + 61a]a2 - 29a3]
276 [1s 15y2 2
43> = —Yz— 5 Y+ J4L [19a] - 18a2]
2 8 3291 77 Tg a3t 3 a4
5/2 a
X'Vi5 (5 3.3 23
54> Z [153“4"‘132*3
5/2
- X'V/15 13 (7 .2
5J> 2 [4 [4 ay + a,
5/2
53> = 1_2/7_? {2 a, ]
5/2
50> = I_.é_.@ M
>2/15
- X' vi5 .9
5J> z [ 2 a]Y}
2
- y (1.2 ¥ {28911 .4
| 29> S U {4 ay 3a2) * 16 [128 ay
665 8691 _2 1287 _2
a3 - ey tog @ - 135"“4]]
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TABLE 6 CONTINUED

< 1J

P}
(B a2 - 2]

14057 _3 . 4293
32 3 * g 23y - ‘51331]

2

X3 | 20> = /¥ -5ajy + Yo [_ B ad+ U0 . 10533}]
3 L 9¥

<13 | x3 | 29> = /7 I3y +—i%

<]J]X§'2J>.—.

by
™
<]
ol
-<N
+
-
'

<1J|x§]2J>

i
2
|_h|a )
-<N
+
_.Jlm
[=)]
-<0)

w
Efe)}
g
+4)
—t
H
W
o
(%)
NDJ
| S
L——J

4
6 < =f345 . 3.3 336363 .3 , 83643
<W I x3]2» =vy S-apy” + 2% [- 6 o2y * g aga, - 23599a3]]

d -~
Y 43 _3 111
<13 | 1 |33> = 3——2'&' ——2] + 2 ["’—‘2 aj - aja, * Sag ]]

~ 2
15 4635 _3 , 2139 )
<3 X8 L‘Ta‘”% [__8_a1 + &2 a.a, - 3672,
— 2
/& ¥ (2813 .2
<1 |G 3= X | 5v+ g [4 a]—285a2}]

-
2 .25 3 13491 _3 | 4135 _ }
<1 g3 XE - Ry [‘ 62 31 * 71 2% - 7333

g

i}
5 .3 (1121 _2
<1318 a0-- 3B [ 105 2, 205 [*a,-ggaz]]

9 303 _4
R PN R S

<13 ] xg | 43> = ¥/2/3 [a] M %]‘Y [33? - 6a;a, + 2a‘3]]
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TABLE 6 CONTINUED
<]Jlx3[4d>=y3/2/3_[1-%y [a$+a2}]
<13 | xg | 43> = 73/2/3' [-Qa]Y + Y2 [- ”;g a? + 1325 a;a, -57a3]]

2
< 13 | xg | 43> = y3/2/'3" [;—5 v+ —Y——1?6 [——513 a% - 77a2]]

<13 | x§ | 40> - 3/2/'[ 285 aiy? + 15v° [ 222 a2 + 246a 267 a3]]

1%2 -~ 73

<]J'x]l5J>= 72/_3__6_-: lﬁ.{.aa +.2_a_3+Zl @.35
J 2 4 (4 172 3 20 1

35 3 35 2

2
<138 53>=Y "’{Q[

9 -
3 _Y¥ 3| 3 7y (117 .3 _ 69
<1d | | 54> = = >, +g [ aj - +Ha3]:,

) _
<13y ls»=Y B0} Ty [§a§+3a2]]

2
<1 | x3]50>="Y ——‘/g—-g (—g%a]v]

<13 | | 5a>=7Y

™N
———
N
——t
<
N’

< 2d | x} | 30> = ——Y"ZGE +%y [}_—Laf - 3a2]]
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<23 | x5 | 30>
<23 | 3| 30
<2J|x3|3d>
<23 | x3 | 33>
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<20 | x) | 49>
<2J]x§|4J>
<20 | x3 | 40>
<23 | x5 | 4
<23 | x5 | 40>
<20 | 58| a0

21

7 a
L' *g Y[T

-5 a;y+
| "7 “1YT 8

31

665

3
ay + 313a]a2 - g

1535
8

-]

397 2
—]—S—a] - 10a2 ]]

2,37 [_ 14591

a3 + 4359 aja, - 637a3]]

- zoon,)

4
3+ 3y [_ 350g;7 a?

8 1

3 (3773 .2
A { F

)

2
Y (_ 8703 a3 + 3975

8 "1 2

- 53732] ]

3
2, 35Y
Y + a4 (‘

a]a2 - 661a3]]

4657 2
P'4 2

24813 _3

7417
64

+* 95 13 - 127a3]]

- 225a2]]

4 105 .3 [2829 a$
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TABLE 6 CONTINUED

< 2J [ 53> =

]

<23]x§]5J>=

| 50> =

~w

<23 | x3 | 50> =
<2&{x§{5&>=

<23 | x§ 1 50> =

Y 2/30

31
r.}

2

2 3
818y - 7 )33 -

32
Y ¥ou

2
1 3ag
4 4

~

ot

3

's

+32} +-§—1

2
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2

3
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1
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11 2 I
1+ Y( - 3a ]
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227 3 { 50357 .3 , 14913
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3, 39 4097593 _3
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* J-dependent potential constants
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(358 + 433 + 16281+ 1564 , (2817 + 2007F + 114501 + 10432
8 aas + 128

1058 + + +
_ ( 1 1323{’6 4938! 4536)a?a2 ] } (015 110)

+ %(1—1) {1 + % [ (3————1114) ai— 4+ l)az]
4 + 381+ 101)
2 aas

N (512 + 421 + 100 )a% +(7312 + gisz + 1932)0?

—-(27’2 - 2631 % 664)a%a2]} OO 23

2
+% [—(12+91+ 23) a4 + (

where v and a; are the J-dependent potential constants listed in Table 3.
Explicit results for the first few powers of (0J]x}|0J) are listed in Table 4
accurate through terms a3. With these, the g, functions, and the J-dependent
parameters, one can easily obtain the expectation values (vJ|x!v).

Alternatively, one can derive expectation values of x!, directly (without
first finding the g, functions) by employing the hypervirial theorem [32].
Starting with the well-known commutator result

W[ #,A)lvd>=0 (24

where 5# is the Hamiltonian for nuclear motion and choosing A = x~ 'd/dx,
one obtains [32] the general relation

[2( — 1) E,v*/B.)<wdlxi ud) + 4 [(1 — 1)1 — 2)( — 3) v* Kudlxf o>
= (wdix}[21 + (21 + 1)a, (N)x,; + (21 + 2)a,(Dx,2 + ... 1w

(25

The eigenenergies are known through the Dunham expression, £, = ,Eo Y,
(v + 1/2), in which the J-dependent potential parameters are assumed.
Equation (25) can be solved by an iterative scheme analogous to that used it
deriving the g, functions [32]. The results can be put in the form

wdlxblvd)y = C,y Wl wd) + Cro(wdlx*lvd) + Crsdlxy *lvd) (26
+ CpsWdlxi v

where the explicit dependence of C; on [, v and g; (correct through a;) are
given in ref. 32. Results for / up to 6 are listed in Table 5. For the special
case v = 0, eqn. (26) can be shown to reduce to the previously obtained
three-term recursion relation, eqn. (21). It is worthwhile to emphasize
that all the above results can be extended without theoretical complications
however, the algebra becomes quite tedious.

For certain problems, diagonal matrix elements of powers of the inter-
nuclear separation itself, R", are required (for example: n = —2 and —3 for
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treatment of rotational corrections to the rotational constant B,, and the
spin—spin interaction parameter (cf. section 1V)). These are obtainable
directly from Table 5 with the use of the binomial expansion

WIIR" lvd) = R (WJ1 (1 + x)"|vd) = R] (1 + n{vdlxlvd)

nn—1)

— _ (27)
+2 D) wtiudy + n(n 13),(” 2) waixdiody + ) lxl<1,

where sufficient terms in this expression must be retained to assure consistency
in powers of .

C. Matrix elements off-diagonal in v

Matrix elements of the form (vJlx|v'J) can readily be obtained by
generalizing the previous arguments. For example, to avoid the tedium of
lengthy algebraic manipulations necessary for the calculation of the matrix
elements for higher powers of x;, one can derive a recursion relation
analogous to eqn. (26) by considering the commutator

W [, S 1i0'D.
One obtains [32]

E, —E,)? 21+ 1 (2l + 2 .
(lex.', ([lz _(04'———2—2—) ‘)'2] + —("‘2———) al(J)xJ+ —(_—2—) az(J)x§ + .. -)IUJ)

(28)

— + .
= (I—-1) (&, E,) v? (lex.’,“‘Iv'J>

2B

(]

Y wdlxb 'y + 1D A - 2) (1—3)

This recursion equation can be iterated in the manner described before to
provide all matrix elements for I>[v’ —v] in terms of those for which I < [v" —vl.
The latter elements, however, must be found by a different method. Two

alternative ways have been proposed. For instance, one method [18] would
be to use the g, functions, i.e.

(OJ1g8s (x,)[x, + v2B(1 — 3281 + a,/2))1 g5y ()10
(O [g55 (x,)1210)F (OJI[g57 (xJ)]12 10T (29)

while another method has been proposed which bypasses the wavefunctions
by considering quantum mechanical sum rules [34]. These sum rules relate
the unknown off-diagonal matrix elements to the known diagonal ones and
the known (Dunham) energy eigenvalues. Of course, one could always
resort to straightforward perturbation theory [31].

In any event, the most accurate results derived to date for v < 5 and
1< 6 are listed in Table 6 in terms of the J-dependent parameters. Again,
extension of this table is straightforward albeit algebraically tedious.

In order to gauge the accuracy of the above results, matrix elements listed
in Tables 5 and 6 to v = 4 were computed using the data of Table 1 and are

(wdxLv'dy =
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tabulated in Table 7 along with numerical results obtained through a direct
integration of the Dunham wavefunctions, numerical Morse results with

2, = w?/dw x, (denoted Morse spectroscopic, ‘Morse spec’), Morse results
with 2, equal to the experimental dissociation energy (denoted ‘Morse

diss. en.’), R.K.R. results from previous investigations [10, 11], and finally,
harmonic oscillator results (both perturbation expansions and single-term
results). It should be noted that the Morse results depend somewhat on the
choice of ¥, while the present matrix elements usually fall between*. As

can be seen from Table 7, the analytic matrix elements, generally speaking,
become progressively less accurate as n increases and as Av increase. For example,
consider the Av =2, [=1 sequence: aside from the normalization factors, the
leading term (i.e. a, /2) is the same for all elements while the first correction term
goes as (V' + v+ 1)/(jv" —v| + 1). Since for HCI this correction term has the
opposite sign from the leading term, the matrix elements will eventually
change sign; indeed, the (3|x|5) element will be positive. Cashion’s conjecture
[11], on the basis of his results, that the first few elements of any sequence
have the same sign, is corroborated in the present study for those sequences
in which the correction term to a given element has the same sign as the
leading term, and for other sequences only if the correction term and both

v and v’ are small.

In general, the analytic matrix elements are in good agreement with those
obtained by the other methods, and, on the whole, are probably more
accurate. The only anomalous values in Table 7 are those obtained through
the numerical integration of the analytic Dunham wavefunctions for the
orthogonality integral and the matrix elements of low powers of x for the
higher v levels. These spurious results occur because the analytic wavefunctions
are orthogonal only through terms like a}, while in the numerical results
contributions corresponding to a$, . . . al® etc. are included and lead to
unrealistic results. This result demonstrates the necessity of keeping all
terms consistent to a particular power of v because of large cancellations
among the various contributions.

D. Matrix elements off-diagonal in v and J
By analogy to eqn. (10), we can write
oy (5) =857 (x5) Wos () (30)
By defining g4 (x,) through the equation
g7 () =g (c,+ v (6—F) — 37 (L + a,/2) (B> —6")) &8 (x;)  (31)

the general vibration—rotation matrix elements can be written

*In the case of HCI, the best estimate of 9, from thermochemical data [35] with the
appropriate zero-point energy correction, is 37560 + 40 em™, whereas the term
wi/4w  x, has the value 42342 em™.
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(vJ](D(x)Iv'J’) = [[(OJIg"j(xJ) O (xJ + ¥y —3y*(1 + a,/2) B’)gg:{' (x;)
887" (x5 )0D] [(OJ1[g87 (51210 OJI[g8d (x,)1200F ] (32)

where the g'-dependent parameters in Table 3 are to be used in g‘;;‘_,' (x;)
and the p-dependent parameters everywhere else. In order to use eqn. (32),
one need only find the function g&, (xc;). As described previously [18],
this can be found directly on taking the ratio of Yo, (x;') to Y os(x;) using
¥(x;) and the J-dependent potential constants. The (normalized) result,
accurate enough for most purposes, is presented in Table 8.

If we choose v = 0, eqn. (32) simplifies to

(0J] @ (x)IV'T') =<0J10 (x, + v — 3v*(1 + a,/2) B?) g"d{ (x,) V' (33)

Using this result, the matrix elements listed in Table 6, and the g-dependent
parameters, one can derive the two lowest-order rotational corrections to
the pure rotational, fundamental and overtone bands. Explicit results for
the case of dipole selection rules, viz J' =J + 1, have already been published
elsewhere [29, 37] for v" = 0 to 4, but for completeness, these are collected
in Table 9. The leading contributions (i.e., ym and y*m? ) arise essentially
from a shift of one wavefunction (0J) with respect to the other (v'J’)
resulting in a breakdown of the orthogonality of the vibration—rotation
states. As discussed elsewhere [37], the leading terms remain unchanged
for hot-band transitions (i.e., v,J = v + v', J * 1) while the second-order
corrections (i-e. y?m) are multiplied by the factor (v + v’ + 1)/(lv — V'] + 1).
The vibration—rotation matrix elements for the dipole selection rule will
be applied in the following section to an analysis of hydrogen halide spectral
line intensities. However, before concluding this section, we wish to point
out that, using the results presented above, one can easily derive the
vibration—rotation matrix elements corresponding to higher multipole
selection rules (i.e., AJ = 2,3 etc.).

IV. APPLICATIONS

In this section, we illustrate possible applications of the analytic vibration—
rotation matrix elements derived above by two examples; the calculation of
the vibration—rotation dependence of molecular parameters, and the
analysis of spectrometric intensity data.

A. Spin—spin interaction
First, consider the vibration—rotation average which arises from spin—
spin interaction [10]

~ WJIRwd) = R 3wl (1 + x) 3 [vd)

-R? {1 + 6y (%al + 1) (v+ 1/2)



43

5

3(1 13 5 2
+§(z—a¥—-§a;az+ 5@+ 5af —2a, + ‘55‘0: + 5)(0‘*‘ 1/2)2]

+ 43 [—“%—(Qa%—&zz+ 21a, + %Q) (v+ 1/2)6

3 (31185 14259 514 677 795

+3 ( 556 a; — 35 ala, + -——-—16533«::3 + 4—-—-——16 a,a: — 4 $1aa
715 175 10395 475 33

——4—aza3+ ; as + 649 a?~—~:&813- a, + ; a,as -+ 45a2—75a4
1925 765 475 2295 335 665 700

+ e —Tlam + e+ B0 -0+ B0+ B )0+ 1/2)

N % (19035 s__ 7545 4 2175 , 2055 | 42 — 255q,0, — 225a,a5

64 ay 8 aya, + —“—"‘—4 a;as + —"‘"""—'4

6345 , 1575 24 1175 ,

+ 70as + ——4— 16 ez 17 2 aa, + 35001a3 + 8502 —60a, + 2 >
3
— 750a,a, + 73033 + 11225 i —170a; + 490q, + 5%0) (v+ 1/2) ]} (34)

Unfortunately, the experimental data [10] for HCI ar= not accurate enough
to warrant the accuracy represented by egn. (34). [For H,, however, the
situation is different, and the above results are in excellent accord with both
the ab initio results and experiment [32].] We note in passing, that the
present results reproduce the3 Dunham rotational result

B_(wO0I(1 + x)2 vO)= B, =,§0 Yu(v+ 3) (35)
through terms of order 3.

B. Dipole-moment functions of hydrogen halides

As a second more extensive application, we analyze the available spectral
intensity data (including molecular beam, pure rotation and vibration—
rotation measurements) for the hydrogen halides, and deduce the first few
coefficients in the power series expansion of the dipole-moment function:

M(x)= I Mx’ (36)

It is well known that the intensity of a given vibration—rotational band
depends on the square of the corresponding rotationless dipole-moment
matrix element, and that this introduces some ambiguity in the set of
coefficients, M,. However, this uncertainty can be removed by considering
the effect of vibration—rotation interaction (Herman—Wallis factor) on the
individual line intensities, since these vary linearly [9, 37] with the M,.
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TABLE 8

J-DEPENDENT PRE-EXPONENTIAL POLYNOMIAL
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TABLE 9

ROTATIONAL CORRECTIONS TO VIBRATION-ROTATIONAL MATRIX ELEMENTS

<03 | x' |03+ 1> = mly
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) my? 3mey?
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The potential constants utilized in the current study are listed in Table
10. These have been calculated from the experimental Y;; by an iterative
solution of the coupled, non-linear Dunham relations. It 1s important to
allow w, B, and the g; to vary independently in each iterative step, and to
jterate until convergence is reached (typically six steps). This has not
always been done consistently in the past [41], and would result in slightly
different parameters.

The experimental rotationless transition moments (proportional to the
square root of the integrated band intensities),

Mo"(0) = 2 M, (nOlx* |00, (37)

which were fitted in deriving the dipole moment coefficients, M;,, are
collected in Table 11, and the resulting coefficients in Table 12.

To gauge the accuracy of these dipole-moment functions, we have also
calculated the corresponding Herman—Wallis coefficients, C,, and D,
defined by

_Z M v+n J+ 1|x° IvJ)
.F" " (m)= M (0) >~1+4+C,(v)ym+ D,m? (38)

The comparisons with experiment are displayed in Table 13. Since these
results do not depend on any additional input parameters, they reflect
essentially the internal consistency of the experimental data. Consequently,
they are indicative of the accuracy of the derived dipole-moment functions.

The most extensive and accurate experimental data are those for HF and
HCI. The resulting dipole-moment functions are very similar in form having
large positive M;, small M, and large negative M; coefficients. This suggests
that the equilibrium separation in these molecules coincides approximately
with the inflection point (defined as the point where M, = 0) on the
increasing portion of the dipole-moment function.

On the other hand, the experimental data for HBr are, at present, somewhat
controversial [37]. The more recent high-resolution measurements have

TABLE 10

Parameters of the Dunham potential functions for the hydrogen halides

Parameter HFa HCI® HBr° HId

a, —2.25380 —2.36426 —2.43728 —2.563260

a, 3.4881 3.6629 3.8458 3.9587

a; —4.4983 —4.7063 —5.0447 —5.4927

a, 4.703 5.215 5.445 5.300

a; —2.909 - . —5.522 —A4.634 —4.310

¥ 1.01267 x 1072 7.08350 x 107 6.39028 x 107 5.64032 x 1073

aref. 38. Pref. 21. ¢ref. 39. dref. 40: a,, a,, a, are generated from experimental Y, while
a, and a, are generated from egn. (6) consistent with g, (Dunham) = a, (Morse).
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TABLE 11

Experimental dipole-moment matrix elements for the hydrogen halides (in Debye units)

Band HF HCl1 HBr HI

0—0 1.8265262 1.10847f 0.826571 0.445%

0—1 9.850 x 107*P 7.12 x 1072€ 8.7036 x 10727  —4.016 x 107
0—2 —1.253 x 1077¢ —7.75 X 107%€ —2.87 x 10733 1.80 x 103 m
0—3 1.628 x 10734 5.15 X 10k —1.12 x 1073m
0—4 —3.48 X 107%¢

0—5 8.79 x 107

aref. 42. Pref. 43. ®ref. 44. Yref. 45. °ref. 46, fref. 10. Bref. 47. Bref. 9. iref. 48. iref. 49.
Eref. 50; value deduced from measured DI moment. Iref. 51. ™ref. 52.

TABLE 12

Coefficients of the dipole-moment function for the hydrogen halides (in Debye units)

Coefficient HF HCl1 HBr HI

M, 1.80285 1.09323 0.81835 0.445
M, 1.3935 1.2069 0.6435 —0.0744
M, —0.0583 0.02386 0.168 0.504
M; —0.884 —1.673 —1.95
M, —0.66 1.62

M, —0.68

2Chosen to give best fit for the molecular beam data, (11i1Mi11) and (211M{21).

resulted in intensities approximately one-half those of previous lower
resolution work for the fundamental band and three-quarters those of the
2+<0 band. However, the self-consistency of the latter measurements as
judged by the comparison of experimental and theoretical Herman—Wallis
factors is less satisfactory than the earlier work. In any event, using either
set of data, one obtains positive first and second derivatives for the dipole-
moment function [37]. This would imply that R, is to the left of the
inflection point in HBr. More experimental confirmation is needed to
clarify the existing intensity discrepancies and to verify the above conclusion
The situation in HI is even more confusing. There is very strong vibration—
rotation interaction in the fundamental band indicating unequivocally that
M, and M, have opposite signs [51]. While the two independent measuremen
for M,*(0) differ {29] by 10 %, they both show little vibration—rotation
interaction. As a consequence of the above, the relative signs of the first
three coefficients of the dipole-moment function are (+ — 4 ) and this can
be interpreted in two ways; M, is positive, thus implying that R_ is beyond
both the outer inflection point and the maximum of the dipole-moment
function; this situation would be somewhat unexpected in the light of the
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results for the other hydrogen halides. Another interpretation which is in
better agreement with the trend in the other halides but conflicts with
physical intuition is that the sign of M, is negative (HI*) for small values of
R and that the polarity changes near the equilibrium separation. This type
of behaviour has been established for the covalently bound molecule CO
where the absolute sign of M, has been determined by the isotopic
variation of the gyromagnetic ratio [53]. To the best of our knowledge,
these ratios for HI and its isotopes have not been determined experimentally,
but would allow one to discriminate between the above two interpretations.
Alternatively, ab initio computations (e.g. self-consistent field all-electron
bases) similar to those already carried out for HF [54] could be useful in
resolving the above dilemma.

In conclusion, these illustrations indicate how the analytic matrix elements
can be used to extract a unique dipole-moment function from vibration—
rotation intensity measurements. This function can in turn be used to predict
intensities for ‘hot’ bands and for isotopic molecules. However, great
caution must be exercised in extrapolation of the results for the prediction
of higher overtone intensities as the power series expansion for M(x) may
not converge to the true dipole-moment function. Furthermore, the
coefficients of the higher-order powers of x have large error limits associated
with them due to accumulated experimental uncertainties. Nevertheless,
the accuracy of the present theoretical results suggests that future improve-
ments depend primarily on the availability of improved intensity data.

NOTE ADDED IN PROOF

Since submission of this paper, further results on hydrogen halide intensi-
ties have become available. Stocker and Goldman [55], reanalysing pre-
viously published frequency and intensity data of HBr, have deduced a third-
order dipole-moment function in reasonable agreement with that in Table 12.
(Note that the sign of M; was omitted in ref. 55; thus M5 should read —3.01.)
P. Bernage and P. Niay (private communication) have recently obtained new
frequency and intensity data for lines of the 0—2, 0—3, 0—4 and 0—5 bands
of HBr, and have deduced coefficients through M; in the dipole-moment
expansion; their first three coefficients are again in good agreement with ours.
Sileo and Cool [56] have measured emission intensities of HF and D¥ laser
lines, and have obtained ratios of rotationless dipole-moment matrix elements
for many overtone transitions. They analysed their data in terms of sixth-
order dipole-moment functions for HF and DF separately; the first four co-
efficients are similar to those listed in Table 12 for HF, but their values of M,
and M differ significantly from ours. Their M, values lead to C4; > O, where-
as ours lead to C4 < 0 in agreement with experiment [46]. Also their values
of Ms—M, for HF differ from those for DF more than would be expected
because of failure of the Born—Oppenheimer approximation.
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