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ABSTRACT 

The influence of the form of the internuclear potential function on the resulting 
’ z-state diatomic vibrational wavefunctions is discussed with specific reference to the 
Morse, Lennard-Jones, and Dunham potentials for HCl. In an investigation of the effects 
on the corresponding matrix elements, the recent iterative methods for the derivation of 
analytic matrix elements for the Dunham oscillator are reviewed and extended. The 
resulting vibrational matrix elements are then computed for HCl and compared with the 
corresponding numerical results for the Dunham, Morse and R.K.R. potentials. Explicit 
rotational corrections to the various Dunham vibrational elements are derived for the 
first few vibrational levels, and applied in the final section to a detailed analysis of the 
experimental spectral intensity data for the hydrogen halides. The corresponding dipole- 
moment functions are obtained and their systematic trends discussed. 
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I. INTRODUCTION 

Our present experimental knowledge of diatomic molecules is quite 
sophisticated in both its scope and its precision. For instance, numerous 
unstable radicals [l] and exotic species known only to spectroscopists have 
remarkably well-determined molecular parameters [2], while recent 
microwave measurements on the hydrogen halides have led to the deter- 
mination of the equilibrium internuclear separation with uncertainties of 
the order of nuclear dimensions [3]. On the theoretical side, ab initio 
calculations are now possible which, for smaller molecules, notably hydrogen 
[4-6], permit calculation of dissociation energies, equilibrium internuclear 
separations, etc., to an accuracy [ 71 of one part in 10’. Furthermore, 
extremely small effects such as differences in the potential energy within 
the Born-Oppenheimer, adiabatic and non-adiabatic frameworks, relativistic 
corrections etc., [4--S], can be computed with considerable accuracy and 
enable a direct comparison between theory and experiment. However, 
despite these spectacular successes, further work is necessary especially in 
the area of spectral line intensities, where sophisticated techniques have 
recently improved the accuracy of the experimental data available [S-lo] . 

In the present paper we are concerned primarily with the influence of 
the internuclear potential on the calculation of accurate matrix elements 
necessary for analysis of vibration--rotation (or pure rotation) line intensities. 
After a brief discussion of some of the more widely used potentials and 
associated wavefunctions, we derive matrix elements appropriate to a 
generalized (Dunham) potential. These are the most accurate analytic results 
to date and are computed in detail for HCl to enable comparison with the 
numerical results of previous workers [lo, 111, and to illustrate the accuracy 
attained_ Finally, we indicate how these matrix elements may be used to 
make vibration-rotation corrections to molecular parameters, and to deduce 
the dipole-moment function from experimental spectral intensities. In the 
latter regard, we analyze the available experimental data for the hydrogen 
halides and calculate the corresponding dipole-moment functions. 

II. POTENTIALS AND WAVEFUNCTIONS 

A Potential energy functions 
The prototype of all potential functions for bound states of diatomic 

mol&uIes is the harmonic oscillator potential 

kR2 2 

V(x)/hc = -y x = as2 (1) 

where x is the reduced displacement from equilibrium, x = (R - R,)/R, and 
a0 is related to the curvature of the potential at the minimum. In terms of 
the standard spectroscopic vibrational and rotational constants [2] (in units 
of cm-‘), a0 = u2,/4B,. Although this potential implies an infinite dissociation 
energy, the simplicity of the resulting wavefunctions and matrix elements 
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has led to its widespread adoption for approximate theoretical calculations. 
However, for more refined work, a more flexible potential is obviously 
required. 

Numerous alternative potentials have been proposed, differing both in 
their number of adjustable parameters and in their complexity. In the 
fdlowing, we discuss briefly the three most commonly used, namely the 
Dunham [ 121, the Morse Cl33 and the Lennard-Jones [14] . For a more 
complete discussion of internuclear functions, the reader is referred to the 
excellent review articles [15] and to two recent books 116). 

Dunham, in a systematic generalization of the harmonic oscillator results 
(including rotational effects), considered a potential of the form 

V(x)/hc = aox2 (1 + Z a@) f B,J(J + l)/(l + x)* (2) 
i=l 

Employing the W.K.B. technique, he obtained the vibration-rotation energy 
levels 

E”, = 2 Y,j (u + $)’ [J(J + l)]( (3) 
si=o 

where the Ylj are functions of w,, B, and the potential constants, ai, without 
explicitly solving for wavefunctions. This theory is used almost exclusively 
for the analysis of high-resolution frequency spectra from which one can 
deduce the ai and thereby extract information about the potential. (If 
sufficient accuracy is warranted, one can take account of deviations resulting 
from the breakdown of the Born-Oppenheimer approximation assumed in 
the Dunham theory while retaining the form of eqn. (3) [17] .) Recently, 
analytic wavefunctions appropriate to the potential in eqn. (2) have been 
derived [lS] ; their derivation and use in calculating vibration-rotation 
matrix elements are discussed in subsequent sections_ Since the flexible 
Dunham potential is obtained directly from experimental frequency data, it 
can evidently be quite accurate in a limited region around the minimum. 
When truncated, however, this potential ultimately diverges for large x 
(positively or negatively, depending on the sign of the coefficient of the 
highest power term) and wavefunctions deduced from it are hence not valid 
for describing high vibrational states. It has been pointed out, however, 
that turning points obtained by inverting Dunham’s series are applicable to 
the dissociation limit [ 191. In an attempt to circumvent the drawback of 
this divergence, many model potentials having the;correct asymptotic 
behaviour have been proposed. 

One of the earliest and most widely used model potentials is due to Morse 

Cl31 

V(x)/hc = fSe [ 1 - e-OX ] * (4) 

Here, 9, (cm-‘) corresponds to the depth of the potential well (approximately 
the dissociation energy) and the (vibrational) energy levels are given by 

E” = w, (u + 3) - w,x, (u + 4)’ (5) 



where w, = a/srR, (3,h/2Mc):, wexe = w 3 /4 9,, and M is the reduced 
mass of the molecule; a is thus related to the anharmonicity parameter 
w,x, by the equation 

a = (w,xe/R,)f 

(Equation (5) is also valid for other potential functions, so that the good- 
ness of fit of the measured energy levels does not in itself constitute a 
proof of the applicability of the Morse potential.) 

For the rotationless problem, the Schrodinger equation can be solved 
exactly for the Morse potential, and the resulting wavefunctions expressed 
in closed form; these are discussed briefly in the foIlowing section. 
Unfortunately, the inclusion of rotational effects and the calculation of 
matrix elements both lead to expressions which are intractable for 
convenient application [20] - 

In order to facilitate comparison, eqn. (4) can be written in the Dunham 
form 

V(x)/hc = afl* (1 + 2 a#) 
i= 1 

where a, = geaZ, and 

i+2_2 _ 
ai = i + 2)! aI (- l)i, i = 1, 2, 3 _ . . _ (6) 

For HC1 this comparison is presented in Table 1 and the corresponding 
potential illustrated in Fig_ 1, As can be seen, the truncation of the 
Dunham potential, in contradistinction to the recursion relation (eqn. (6)), 
does not alter the potential drasticahy in the vicinity of the minimum; 
however, for large x (X > l), this distinction is crucial and accounts for 
the better representation of the actual potential by the Morse form. 

Another popular model potential due to Lennard-Jones [14] can be 
written + 

V&)/he = 9, [1 -l/(1 + X)n]* (7) 

where n =-6 in the usual (6-12) formulation. It is interesting to note that 
for n = 1, eqn. (7) is sometimes referred to as the Kratzer potential and was 
one of the first potentials for which the exact solution of the radial 
SchrXiuger equation was carried out [22] _ For n # 1, however, this is not 
possible although several approximate schemes have been proposed [23]. 

Again, to enable direct comparison with the previous potentials, eqn. (7) 
can be written in the Dunham form where 

2(--l)’ 
ai = n(i -I- 2)! I 

(272 i- i+ I)! (n+i+l)! 
(2n)! - n! I 

, i=l 2 3 ,, . . . . (8) 

This can be simplified for a given value of n and the results for n = 1,3 and 
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TABLE 1 

Potential constants of HCI: V(x)/hc = aox (1 -t Z +X’) 
i= I 

Dunhama Morseb Lennard-Jones+ 
n=3 

Lennard-JonesC 
n=6 

a, (cm-‘) 211129 209950 338040 1352160 
=1 -2.364257 -2.364257 -4 -7 
a, 3.66290 3.26067 10.6667 30.91667 
=3 -4.7063 -3.3039 -23.333 -107.333 
a4 5.215 2.691 45.111 318.111 
as -5.522 -1.847 -80 -840 
0, 8.364 1.100 133 2028 

aDerived from data in ref_ 21. 
bCalculated assuming ge = 37560 cm-’ and a = ~a,[ Dunham. The values of ‘a’ corresponding 
to the ‘spectroscopic’ or ‘dissociation energy’ bases are 2.23351 or 2.37084 respectively 
(cf. section III C). 
CCalculated assuming Be = 37560 cm-‘. 

Fig. 1. Potential energy functions for HCI. M = Morse function (based on experimental 
dissociation energy); 3,6 are Lennard-Jones type functions with the specified exponent, 
and the broken line is the Dunham function including terma up to n,. 

6 are as follows: 

TZ=l a0 = % 

Q: = (-1)’ (i+ 1) (i+ 3) (i+ 4) (i’+ 17i+ 90) 
i 1080 



n=6 ao=36ge 

ai = [ (-1)’ (i+ 1) (i+ 3) (i+4) (i+ 5) (i+ 6) (it 7) (i-t 20) 

(z9+ 42i3t 743i2+ 63425+ 28512)l [3(12!)]-’ 

Specific results are also displayed in Table 1 and Fig. 1 for two values of the 
exponent n. 

Berhaps a brief discussion of the physical basis for the internuclear 
potential is useful at this point. The Leonard-Jones model originated from 
calculations on uncharged atoms at large separations. Dispersion forces 
produce a net attraction with a potential energy proportional to K6. 
Corresponding to this induced dipole-induced dipole contribution, there 
are also induced dipole-induced quadrupole, induced quadrupole-induced 
quadrupole, etc., terms varying as Re8, R-lo, etc., the effects of which 
combined with more complicated repulsive overlap forces can be conveniently 
approximated by a repulsive R-l* term. For actual molecules, however, the 
6-12 form may not provide the best fit to experimental data and indeed 
many other choices for the exponents along with more drastic modifications 
have been employed [15,16]. On the other hand, the form of the Morse 
potential is qualitatively plausible if one considers the Heitler-London 
treatment of simple molecular systems (e.g. HZ). Exchange effects give rise 
to attractive long-range contributions to the potential which vary as e-R’ao 
(a0 being the Bohr radius), while coulombic contributions are shorter-range 
(-e-2x/a, ) and repulsive_ Although it represents gross over-simplifications 
of the highly complex (and not completely understood) intramolecular 
forces, it is somewhat remarkable that a Morse potential is applicable even 
for some states for which no (substantial) minimum exists. For instance, 
Mg+, having a nominal bond order of zero and thus being appropriately 
described as a van der Waals molecule, has a ground-state potential curve 
fitted quite well by the Morse function [24] 

V(x) = 424 (1 - em4 l Iox )’ 

For ArZ , a potential function derived from non-spectroscopic data [25] 
resembles a Lennard-Jones function (with n = 6). Meager spectroscopic data 
[ 261 available for this molecule (9’, , w e, w exe and estimated B, ) indicate 
both a form of potential, and the presence of only six vibrational levels 
(V = O-5), consistent with a Morse function (with a = 6,6-O f 0.4 levels 
are predicted). Both a Lennard-Jones potential and detailed consideration 
of the influence of long-range forces lead to the prediction of 9-10 
vibrational levels 1271, with the last three very near the dissociation limit 
and thus difficult to detect experimentally. The true potential function 
seems to be intermediate between the Lennard-Jones and Morse curves on 
the attractive side, but more repulsive than either of these on the small 
separation side (J_ F. Ogilvie, unpublished results). 

In any case, the Dunham potential (eqn. (2)) is, in principle, capable of 
representing all analytic potentials to any desired accuracy (over the range 
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in which it converges) by including sufficient terms in the infinite series. In 
subsequent sections, we show explicitly how the higher terms in the potential 
(a, i> 0) affect both the wavefunctions and the corresponding matrix 
elements. Furthermore, some generalizations about the magnitudes of the 
ai have been discovered. For many molecules, Calder and Ruedenberg [ 281 
have shown that a1 = -3.22 + 0.09 and a2 = 6.49 f 0.75. For hydrides, these 
coefficients are somewhat smaller. The magnitudes increase systematically 
for the hydrogen halides from a1 = 2.25 to -2.53 and a2 = 3.49-3.96 for 
HF through HI [29], while weakly bound molecules (ground-state well 
depths from 100-1000 cm-‘) have markedly larger magnitudes for al 
(- -5 to -7) and probably for the higher ai as well. 

Before concluding this section, it should be emphasized that even if 
several potentials are in good agreement over a specified region and, 
furthermore, that if they reproduce the vibration-rotation energy levels 
accurately, they may still lead to significantly different wavefunctions and, 
consequently, different matrix elements 1301. Precisely for this reason, 
matrix elements can provide a sensitive gauge for judging the accuracy of 
wavefunctions. This point will be discussed in more detail in Section III 
where matrix elements of HCl are computed utilizing different potentials. 

B. Wavefunctions 
In this section, we outline the derivation of analytic wavefunctions for 

the Dunham oscillator. Because the procedure is iterative, the results can 
theoretically be made as accurate as desired; in practice, however, the 
algebra becomes quite tedious after five iterations for low vibrational 
states (u = l-5) and sooner for the higher u states. 

Here we discuss only vibrational wavefunctions as rotational effects can 
be incorporated in a straightforward formal way [18]. The method consists 
of a W.K.B.-like transformation of the radial Schrijdinger equation 

and 

9,(x) ‘AL (+/4x) 

to a pair of coupled, nonlinear differential equations 

2&W 
Y(x)'- & 

-$ [V(x)-&I =o 
e 

and 

d%z,, (x 1 
dx2 

-y(x) %(x) + E” -aJ g (x) = 0 

dx *t? v 

(9) 

(10) 

(11) 

(12) 

where E, are the (known) Dunham energy levels (eqn. (3)). This set of 



equations may be solved by the power series 

Y(X) = izO bix’ (13) 

guw = i c,f (14) 

in the following manner. First the exact solution for the harmonic oscillator 
(V(x)/hcB, = y2x2; E, /Be = 27-l (u + 4) where 7 G !ZB,/w,) is obtained; 
then, in the first iteration, one additional term is added to the potential 
W(x)lh@+-$ = y-*x* (1 + a,~)) while terms higher than al appearing in the 
Dunham energies are neglected; at the same time, the series of eqns. (13) 
and (14) are truncated according to 

bi =o, iz=3 

c ui=O, i2v-t 2 
(15) 

Continuing this procedure, for the n th iteration we obtain the wavefunction 
for the potential 

W)lhc& = re2x2 (1 + alx + a*~* + . . . +a,x”) (16) 

expressed in terms of the polynomial series truncated according to 

bi = 0, i>n-I-2 
(17) 

c = 
"i 

0, i>n+v+l 

The results for the first four vibrational wavefunctions correct through five 
iterations are listed in Table 2. Additional results up to v = 10 correct through 
three iterations have been tabulated elsewhere [18]*_ 

*Theexpression forg, isinerrorinref. 18;thesmallcorrectionstotheevenpowers 
ofxshouldread 

a: - 
2683233 

4 a,a, + 91539a, 1 
21023159a3+ 1243809 1 x2 16 1 4 =,a2 -45717a, 

f32.Y' 21 40767533 16 =I a-2249793 4 a,a2 f 91329a, 1 x4 
7 

+- -? 
243153 

4 _4902361aS+ ala2 -11415 a, 1 x6 16 ’ 4 

+- : ‘Y’ C 1167253 45915 a:-- atal + 2859~~ 1 xa 
16 4 

+9r -- 17 a,a, -_a, 1 4 xX0 

3 253 i-- C -16 33 
2 a:+-aa,a,-aa, 1 x" 4 
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TABLE 2 

UNNORMALIZEO g,(x) AND y(x) FUNCTIONS 

Y(X) = 
[ ( al + Y 

5 3 
r al - 3ala2 + 2a3 

1 

+ rl. I 681 5 
al 

339 3 
4 32 

- 
4 ala2 

+ 131 2 
2 ala3 

125 2 + - ala2 
2 

- 46ala4 - 42a2a3 + 24a5 
II 

+ t + $ 

[ [ 

- g ai + 3a2] + $ (- 

49 21 
2 ala3 -- 

2 
- 2 a2 + 15a4 11 x 

+ c “1, [ 13 al 3 
Y 16 

- 9 ala2 + 
r 

2a3 1 

-I 

305 4 123 2 
32 al + 4 ala2 

483 3 
ala2 + 

199 2 
- 1 8 4 a1a3 

193 + - alag 77 
4 - 2 ala4 

- 36a2a3 + 24a5 X* 

+ 55 4 ala: - 13ala4 - 13a2a3 + 12a5 X4 

+ i$ a:a2 - 2ala3 - a z + 4a4 X5 

a5 - 5 16 a3a 12 + 2 afa3 + g alai 

ala4 a2a3 _P_ 2 2 a 5 ,6 + 

27 - 4 ala2 + 3a3) + y3 ($j$ a: - F aTa 
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TABLE 2 CONTINUED 

+ 1083 ala3 2 + 937 16 16 ala2 2 -- 269 8 ala4 - 30a2a3 + 12a5 

151 - 16 ala: + G$ ala4 + 5a2a3 - 2a5 X4 

X5 

92 = 
[ ( -gig _$l.a: + 9a2] +$- (- aa: 

+ 2415 ala2 2 191 459 2 
16 

- 
2 

ala3 
- -jj- a2 + 45a4 

+ [4aly+y2 (?a:-45ala2+18a3] +g[qa:-2916a:a2 

3221 2 
A - ala3 + 

2 
1187a 623ala4 - 552a2a3 + 192 a5 x 

+ ,2 + - 



TABLE 2 CONTINUED 

+ - 3267 1651 907 - - - 8 ala2 3 -g- ala3 2 4 ala: + 145ala4 + 132a2a3 60a5 x3 

4893 3 1041 

93 = - 32 al + 8 ala2 

+ 26495613 ,3, 
124273 2 

ala3 
157037 2 

- 2 -?t?- - 256 1 64 ala2 + 
4451 
4 ala4 

f -a2a3 7917 - 
8 

276a5 Jl 
+ 11 3 -- 

2Y 
+ky2 -F 

t 
23 a: i- lla2] i- f$ [- S$$ a: + q a:a2 

1119 - - ala3 2 
- q a: + 225a4 

il 
x 

1689 
- r ala2 + 40a3 ) 

1628133 
_ 256 .3, 

103273 2 
1 2 + 32 a1a3 +*%a2 12 
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TABLE 2 CONTINUED 

15317 
- 16 ala4 

3429 _- 4 a2a3 + 273a5 

iI 

x2 + x3 

i- c - $a, +gY _gLay 
( 

+ 19a,a2 - 13a3] + $ [- y a: + 9 a:a2 

17125 2 1121 815 1453 - 64 ala3 - 8 alag + 8 ala4 + 16 a2a3 - 45a5 x4 

+ [$ [;a: - a21 +s (75aT - ya:a2 + ya,a3 + 13a$ - Fa4]] x5 

+ g 

[[ 

- g a: + F ala2 - a3J +$Y- [- %a: iFafa2 - %a!$3 

- p alag + 809 80 a7a4 
+ F a2a3 27 --a 

10 5 11 x6 
-2-ala2+2 33 2 La 13 a + 5 af - a4 x7 

+ Z-L a3a _ 3 a2a -21aa 2 
32 12 2 13 16 12 

+zaa 
40 14 

+-aa 11621 
8 13 

+-a 15291 2 2-Ta4 2115 
16 

+ ( 547 3 - 2 a l + 172ala2 - 50a3] + y4 f- 24iyg7 a: 

93291 3 831239 2 51571 2 
+ - ala2 - 48 ala3 - 4 ala2 + 5617 ala4 2 

+ 849a2a3 - 1248a5 x 
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TABLE 2 CONTINDED 

8221 - ala3 4545 2 1395 - - 4 

+f ( 

a2 + 2 a4 x2 

19a y + y2 ‘lo61 a3 - - ala2 + 148a3] + $ [ 80$i87 a; 1645 * 
1 16 1 4 

1394729 _ 16 ,3, 12 + 492913 2 - ala3 38079 - 8 4 ala4 

225a2a3 + 2484a5 x3 + x4 

25 3 - 2al + 6ala2 

+ E a2a3 - $ a5 1 x9 
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The role of the g,-polynomials in the calculation of analytic matrix 
elements is developed in detail in the following section. As discussed 
previously [US], the accuracy of the wavefunctions after three iterations 
is at least as great as that associated with the standard numerical R.K.R. 
procedure. The results listed in Table 2 are consequently even more 
accurate and, indeed reproduce the (experimental) energy levels to the 
accuracy of the Born-Oppenheimer approximation. 

The first five vibrational wavefunctions are plotted for HCl in figures 2-6 
along with the harmonic oscillator and Morse wavefunctions. The harmonic 
oscillator wavefunctions may of course be considered to be special cases of 

0-4 
-p-e 

-:03 
--.L___ 

-02 
:;, - 6 

dl 02 03 04 05 

Fig. 2. Normal&d vibrational wavefunctions for u = 0. H.O. = harmonic oscillator, 
M = Morse, and H.T.S. = anharmonic oscillator wavefunctions based on Dunham potential 
function including terms up to a5. 

- 
- 

HTS - 
- 

M 

- 
-04 -03 -cz -01 0 01 02 03 64 0'5 

Fig. 3. Normalised vibrational wavefunctions for u = 1. H-0. = harmonic oscillator, 
M = Morse, and H.T.S. = anharmonic oscillator wavefunction based on Dunham potential 
function including terms up to a,. 

HTS. - 
- 

M 

HQ 
- 
- 

-w -0.3 -Qt -01 0 0, 02 03 04 05 

Fig. 4. Normal vibrational wavefunctions for u = 2. H.O. = harmonic oscillator, 
M = Morse, and H.T.S. = anharmonic oscillator wavefunction based on Dunham potential 
function including terms up to a,. 
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HTS 

M 

HO 

Fig. 5. Normalised vibrational wavefunctions for u = 3. H.O. = harmonic oscillator, 
M = Morse, and H.T.S. = anharmonic osciiIator wavefunction based on Dunham potential 
function including terms up to a,. 

HTS 

M 

HO 

Fig. 6. Normal&d vibrational wavefunctions for u = 4. H.O. harmonic oscillator, 
M = Morse, and H.T.S. = anharmonic oscillator wavefunction based on Dunham potential 
function including terms up to a,. 

the solutions of eqns. (11) and (12) in which ai = 0 for i > 0. As mentioned 
previously, the Morse functions can be expressed in closed form [ll] 

G,(x) = NVe-y’2 y(k-2v-1)‘2 L,,(y) (18) 

where 

y = ke-““, k = 2 or $!!L , 
-exe e 

L 

kv 
(y) = 5 (-l)k! l-‘(k - v)y”-’ 

J-=o (u-j)! I’(k-u-,)j! ’ 

Nv = O---~-U 
u! I’(k - v) 1 t (-l)v, (19) 

such that J$,t(x) $,(x)~x = Svvt _ 

We note that approximate Morse wavefunctions (and matrix elements) 
may be obtained from the accurate Dunham results through the use of the 
recursion relation (eqn. (6)). The effects of the slight differences in wave- 
functions on the calculation of matrix elements will be considered in detail 
in the next section. 
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III. MATRIX ELEMENTS 

A. Introduction 

For many problems in molecular physics (e.g. vibration-rotation line 
intensities, Franck-Condon factors, molecular beam studies, rotational 
dependence of molecular parameters, deviation from Born-Oppenheimer 
behaviour, electron diffraction studies, etc.), explicit expressions for radial 
matrix elements of various analytic operators are desirable. If very great 
accuracy is not required, simple harmonic oscillator wavefunctions or 
anharmonic (cubic potential) wavefunctions may be used to calculate 
matrix elements. These, in general, give reasonable results for Au = 1 

elements; however, they fail noticeably for Av = 2 or higher. To determine 
these overtone matrix elements or if higher accuracy is required, one must 
employ wavefunctions deduced from a more representative intramolecular 
potential. Heretofore, one had three main options: firstly to use electronic 
computers and to calculate required matrix elements numerically [lo, 11, 
30 J ; secondly to use the Morse potential (or some similar solvable model 
potential) and the resulting closed-form Morse wavefunctions to deduce 
matrix elements 1201; thirdly to use harmonic-oscillator wavefunctions and 
to treat the corrections introduced by mechanical anharmonicities via 
perturbation theory 19, 31] _ While the first method leads to accurate 
results, these are of limited applicability since matrix elements must be 
determined individually for each operator and for each molecular system. 
Furthermore, matrix elements calculated with Morse wavefunctions prove 
to be too cumbersome for practical use. Even in a simplified approximate 
form, these have never gained widespread acceptance. The perturbation 
approach has been carried out through fourth-order (keeping the a4 term in 
the potential) for the fundamental and first three overtone bands [9,31]_ 
To obtain results of comparable accuracy for other matrix elements, or 
more accurate expressions for these elements, fifth and/or higher-order 
perturbation theory with its concomitant complexities is mandatory. 

In an attempt to circumvent the above shortcomings, alternative methods 
have recently been developed whereby matrix elements can be determined 
in a relatively straightforward manner to the accuracy of the Dunham theory 
(ultimately to the accuracy of the Born-Oppenheimer approximation). 
These methods have been described elsewhere [18,32] so we confine 
ourselves here merely to a cursory review and a complete listing of the most 
accurate results obtained to date. In the following, we first consider 
expectation values, then matrix elements off-diagonal in u but diagonal in J, 
and finally, the most general case of matrix elements off-diagonal in both 
uandJ. 

B. Expectation values 
Two different approaches have been formulated for the calculation of 

expectation values within the Dunham framework 1118,321. Assuming a 



potential of the form 

v(x’4 = y-*x* (1 + aIx + a2x2 + . . . ) + J(J + l)z 
hcB, (1-c x) 

17 

Gw 

=~-2x2(1+aIx+a2x2+...)+J(J+1)(1-2~+3~2...) 

= ym2(J)xJ2 (1 + al(J)xJ + a2(J)xJ 2 . . .) 

+ constant (J), 

where the J-dependent parameters are listed in Table 3, one can use the 
defining equations for the gu functions (see eqn. (10)) in order to reduce 
the problem of finding expectation values to one of calculating ground-state 
expectation values of powers of x. That is, 

wv?(x)luJ) = 
(OJlCg$ (xJ)12f? (x, + r’PC1 - 3r*P(l+ a&2)1 IOJ> 

ml II.&; (x,)1 2105> 
(21) 

where j3 = J(J + 1). The function C(x) is assumed to be an algebraic operator, 
and the normalization factor for the g, function has been explicitly 
included. The P-dependent terms in the argument of 0(x) arise from the fact 
that the integral is taken about an equilibrium position of x= shifted from 
that of the non-rotating case; i.e. xJ = x - r2p[1 - 3r2p(l + a1/2)]. The 
&$ (xJ) functions are identical to gV (x) except that the J-dependent potential 
constants listed in Table 3 are used. 

Ground-state expectation values have been worked out previously by 
Herman and Short [33] using a novel perturbation approach. However, as 
discussed in ref. 18, one can obtain ground-state expectation values of xi 
in terms of those for xc’ and xr via a recursive technique. Utilizing the 
identity 

Wix~’ y(x,)l O& = (n - ~)@JI~c~~IOJ) (22) 

with the accurate expression for y(x,) (Table 2), one can consistently (with 
respect to powers of y) reduce powers of xJ higher than x>. The following 
expression accurate through a: (a1a4, aTas, . . ., as) is thus obtamed 

(04x>OJ,=,, -?(2+ 2,-g 1 (Z2 + 6Z+ 8)a3 

+ C 
2z2 + 

14z+ 2 17 ) a; - (2Z2 + 13Z+ 16)a,a2 1 
- 6 [(f + 12Z2 + 44Z+ 48)as - ( 5z3 + 5gf i 206z + 2oo ) azaj 

+ 35Z3 + 425P + 15141 -t + 1392 )a&-( 5Z3 61Z2 + 2291 -I- 230 
8 2 
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TABLE 3 

J-DEPENDENT POTENTIAL CONSTANTS 

Y(J) = Y 1 
[ 

- $y2B (1 + al) 

+ 3y4f32 
t 
15.2 
8 1 

-a2++1+F 

il 

a,(J) = al + y2Et 4 (a2 - 1) --3al (1 + al) 
C I 

- 24ala2 + lOa + 27a: - 24a2 t 33al + 32 
1 

a2(J) = a2 + y28 5 (a3 + 1) - 3a2 (1 + aI) 
C I 

+ 3Y 42 B f 9 z- ala2 2 - Fala3 - 2a2 2 + 5a4 + gala2 - 10a3 + 7a2 - 10 I 

a3(J)=a3+y28 6(a4-l)-3a3(1+al) 
L- I 

+ 3y4B2 
( 
9 a2a 
2 13 

- 
gala4 

- 
2a2a3 

+ 
7a5 

+ 
gala3 

- 
12a4 + 7a3 

+ 
14 1 

a,(J) = a4 + y2f3 E (a5 + 1) - 3a4 (1 + al) _ 1 

a,(J) = a5 + y2e 8 (a6 
c 

-I)-- 3a5 (1 + al) 1 
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TABLE 3 CONTINUED 

f 3y4%2 f 2 2 a2a 15 - 12ala6 - 2a2a5 + 12a7 f gala5 - 16~16 + 7a5 f 24 1 

a,(J) = a, f r2% (n + 3)(a,,l + (- 1)“) - 3a, (1 + aI) 
C 1 
+ Order y4%* 
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TABLE 4 

GROUND STATE EXPECTATION VALUES* 

< OJ 1 xy 1 03 >=f 

~03 f xj 1 OJ > = -+a,y- - 31ala2 f 15a3 

3 +Y_- c 12555 ,$i + - 5451 a3a - 915 2 Tala3 - 7683 2 16 64 1 8 I 2 - 4 ala2 

+ - 525 ala4 + 235a2a3 - 1 05a5 1 2 

< OJ 1 "52 1 OJ 

7197 2 325 105 2 - - ala2 f 2 ala3 + -p-- a2 4 - 45a4 

< OJ j xJ" 1 OJ > = _ &I- a,y2 _ _.& !!!ZZaf 
I 4 - 177ala2 f 65a3 

1 

119127 
a 

5 45507 3 13551 2 
-- 32 1 i-----a 4 1 2 - 2 ala3 

11827 -- 
2 ala: + 3230a,a4 + 2844a2a3 - 1050a5 

1 

7a2 

4 
+fi f 54 45507 al 4 -- 11827 2 

8 
ala2 + 711ala3 

* 999 4 a2 2 - 180a4 1 

< OJ f x; f OJ > = - E alY l ,6 3 it 
- w a; + 71fa,ii2 

449 
- 7 a3 1 
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TABLE 4 CONTINUED 

30865 30107 - -a,aE +Ta a 
8 

, 4 + 1647 a2a3 _4179a 
8 5 

< OJ 1 xi 1 OJ > = g 9a 
2 I 

+ 2 
4 30107 

32 al 
69741 2 

- Tala2 -I- Tala3 

3495 + 2805as - 2 a4 
1 

* J-dependent potential constants 
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TABLE 5 CONTINUED 

+ - I 1155 3 ral + ya,a2 - +I3 
1( 1 

v + $ 

+ - 
I 

705 3 + 225ala2 - 70a3 
1 3 

-ral II I] v + F 

304437 5 
128 al 

'- a,az + 2 ala4 + 2 a2a3 l15Sa5 1 
40261 6055 5667 

- 
- 

627165 5 239985 3 .128 al + 16a,a2 .wafa, - 

- .- ala5 + 2 ala4 + 2 a2a3 1365a5 ][v 62013 8535 7335 - + g2 

.Fa,a2 23265 3 - vafa3 

- 
4989 543 483 - s 

ala; + 2 ala4 + 2 a2a3 63a5 11 v + i I 

4 

2 
+ (63al - 46a2 + 42al + 28) J (J + 1) 

+ 12(45a: - 26a2 + 30al + 20) J(J i- 1) 1 

+Y 
4 + 9) J(J + 1) - $ (13al + 3) J(J * 1) 

40261 2 5667 
- -=la2 + - 8 2 =1=3 



24 

TABLE 5 CONTINUED 

+ pala3 2445 

2 

l 1707 2 
4a2 

- 
2 

295a4 11 
v + 

i 1 

-lla4 V-F; 
4 

It I] 

c VJ 1 x5 1 VJ >=$-E$a, [v+$] -7Oa, [v+$Jj 

5667 + -ala2 
2 

- 1107a3 
I 

e 

1 
+32 

7335 - -a: +Ta,a2 - 1085a3 
11 1 

: 
2 

v+- 

1 
4 

+16 - 315a3 
11 I 

v + 3 

+F J(J+l)+ v+$ 
I 1 

2 
J(J + 1) 1 

143 
- Ta2 

+38 
II 1 

v+; J(J+l) 

J(J + 1) 

11535783 5 128 =l + 4354275 3 16 ala2 158085 
2 

- ala3 - 
1119415 
-Ba,a 

145417 + - ala4 2 + 64731a2a3 - 22029a5 

+ -Traala2 370485 3 - 5845aTa, - 78465 16 alag + 8853 -q- ala4 + 3759 2 a2a3 
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TABLE 5 CONTINUED 

1071 1 3 

--ya5 “‘2 II I 

3 468069 5 23765 

+16 - Tal 
+ w a:a2 - 3815afa3 - ‘8 ata; 

2303 
+ - ala4 2 

+ 1029a2a3 - 231a 
5 

< VJ 1 x6 1 VJ > = 

- 945a2 

11 1 2 
v + $ 

+ vaf - 165a2 
l4 

II I] 
v+- 

2 

+ 1174281 af _ 19277a4 II 1 v + $ 

26775 2 
- - ala2 + 2303 

8 
2 ala3 

13la4 
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TABLE 6. 

OFF-DIAGONAL VIBRATIONAL MATRIX ELEMENTS* 

-c OJ 1 x; 1 lJ> = 

<OJ 1 xi 1 lJ> = 

< 03 1 xf: 1 lJ> = 

<OJ 1 x; 1 lJ> 

90a4 )I 
-35a3 

2491 3 819 
- 8 a, + 2 ala2 - 133a3 

105a5 

< OJ 1 x; 1 2J> =s [1 +$Y [$ - 5a2J *$ [-%at+Fa:a, 

+=a, +=a2 
2 13 8 2 

- 135a 
4 

< OJ 1 xi 1 2J> =; -$a,y+ --a 641 3 + 305 
8 l 2 

ala2 - 57a3 11 
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TABLE 6 CONTINUED 

5943 3 1947 
- ra, +ra,a2 - 37a3 

<OJ 1 xi 13J>= 

!!I ,2, 
-4 12 

- sala - 2a2 l3 2+5a 
4 

iJ 

c OJ I X: I 3J> = y3’t” [a, + g y bay - 6a,a2 + 2a3]] 

< OJ I xi 1 3J> = * [I - 3y [ a: + a2)] 

< OJ 1 xi 1 3J> = 
993 3 

- -Tal 
+ 725a,a2 - 276a3 )I 

< OJ 1 xi 1 3J> = 
3’2J3 

’ 
2 13 

<OJ 1 x; I3J>= C - Ta,y2 245 + - 5x3 3 32a, 12201 + 4269 - 2 8 ala2 - 157a3 

35 2 135 2 
+ 24 ala3 - 3a,a4 - - a2a3 + 7a -- 

4 ala2 2 5 11 
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TABLE 6 CONTINUED 

< OJ 1 x; } 4J> = Y-- ‘F [; [; a: + a21 + p [g a;’ - 18a:a2 

5 11 2 
+ 3 ala3 - 2 a2 + 4a4 11 

< OJ 1 xi 1 4J> = 2 
B 

C 
3a 
2 1 

- 9 a,a2 + lla3 II 
< OJ 1 xi 1 4J> = 

< OJ 1 xi 1 4J> = 
2 

y+ EiJL 
4 

19af - 18a2 II 
5’2Jis <OJ 1 x; I5J>=’ 2 

2 
a2 

+ $ afa2 + $- ala3 + 2 + a4 

]I 

< OJ 1 x; I 5J> = a3 + $ ala2 + 3 I 
< OJ 1 x; 1 5’2m 5J> = ’ 2 

[a [+a: + a2l-J 

< OJ 1 x; 1 5J> = 5’2m y 
2 I * a 1 1 

< OJ 1 xJ” 1 5J> = -Y 5’2m 2 11 1 

< OJ 1 xi 1 5/2m 5J> = -Y 2 
[- %G] 

2 

< 1J 1 xl 1 25~ = fi 1 + & 

+ - 665 ala3 8691 
2 

- 
T 

ala2 2 + 1287 
8 

a2 2 - 135a II 4 
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TABLE 6 CONTINUED 

< 1J 1 “32 1 2J> 2815 3 1159 
- 16 a, + ala2 4 - 105a3 

< 1J 1 xj 1 23, = Sy c 3y $ 
+ 25a 

2 II 
< 1J j Y.! 1 25s =fi t F eqy2 - f y3 14057 3 4293 

-Tal*8 ala2 - 161a3 

<lJ 1 xi 1 255 = fi ma2 _ 
4 1 303a 2 

< 1J 1 xi 1 2J> 
- 23599a3 

<lJ 1 xi 13J>= 

< 1J 1 xi 1 3J> = - T--al 4635 3 + 

2 

2139 ala2 - 367a3 )I 

<lJ 1 xi I3J>= 
2 )I 

dJIx;/3J>= q C -- 555 8 a,y2+ry 25 3 + 16 4135 ala2 - 73a3 

< 1J 1 xJ” 1 3J> = 
)3 

< 1J 1 $1 45~ = 

l3 

- F a:a2 - sala - 2a2 2+5a )I 
4 

<lJ 1 x; I4J>= u312fi [a, +$$ kaf - 6a,a2 + 2a;)] 
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TABLE 6 CONTINUED 

< 1J 1 xi 1 4J> = y 3’2fi [ 1 - gy [ a: + a2]] 

< 1J 1 x; 1 45~ = y3’2J5 c -9a,y + y2 1713 3 
-Tal 

1325 
+ - 8 ala2 -57a3 

< 1J 1 x; 1 45~ = y3’2a c Fy +EYf 
16 

77a 13 2 

< 1J 1 xJ” 1 4J> = y 3/2a 
c 

- y aly2 + 15y3 
3 

< 1J I xi I 5J> = 

f p a:a2 35 2 135 f 24 ala3 - 3ala4 - 4 alaS - 3 a2a3 + 7a 
5 11 

< 1J 1 x; 1 5J> = y2 F [k [$a:ta2] +p (gaf 

- 18 afa2 + $ ala3 

11 2 - 2 

a2 +4a 
4 11 

< 1J 1 “53 1 55~ = y2 ms 2 
[ 

:a, +p 

<lJ 1 x; I5J>= 

<lJIx;155>= 2 y2 Jnr - +a,y 1 

< 25 1 x; I 35~ 
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TABLE 6 CONTINUED 

665 
< 25 1 x; 

2 
1 3J> = [ -Fag+% - y a: + 313a,a2 - -g- a3 

< 25 1 xJ” 1 35~ = 99 [ p +3v2 L 397a2 _ 1Oa II 
16 1 2 

< 25 [ xi 1 35~ = 129 3 f 14591 3 4359 F [: -- a,y2 + 9 I - 8 a, + 2 
2 

ala2 - 637a3 

< 25 1 x; 1 3J> = 

15 3 

Y II F v2+ig 1 3773 a2 _ 289a Jl 4 1 2 

< 25 [ xJ” [ 3J> = q [. -?a,=+ d - Tal 
350077 3 2 

f 1 0439a,a2 - 20749 a3 -jj- 

< 23 1 xl 1 4J> = 

< 25 1 xs 1 45~ = $T[l +gy[$- - 5a2)] 

< 25 1 xj 1 4J> = fl [-Fa,y+$ [-yaf+ya,a2 - 661a3 ,3 

< 25 1 xi 1 4J> = y/z[7y+{ [?a; - 537a2 II 
< 25 1 x; 1 4J> = r/5[- ya,y2 + @ (- waif + Ta,a2 - 127a3 ]] 

-= 25 1 x; 1 4J> = fl C 195 u2 +32y 105 3 
4 2 



- F a:a* - ij ala3 - F a2 + 5 2 
a4 )I 

3i2m 
c 25 1 x: [ !%I> = y 2 [al + 7y [ 3a: - 6a,a2 + 2a3 

c 2J 1 xJ” [ 5J> = y3’zp c 
1 - 6~ a: + a2 

31~~ 
< 23 1 xi 1 552 = ’ 2 - 12al y 

1 
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TABLE 

< 35 

< 35 

< 33 

< 35 

< 35 

-c 35 

< 35 1 xi f 5J> = 

-z 35 1 x5 1 5J> = 

< 33 1 xi 1 5J> = 

6 CONTINUED 

1 xi 1 4J> = 

1 x; 1 4J> = 

1 xi 1 4J> = 

1 xJ” 1 4J> = 

1 x; 1 45, = 

I x; I 4J> = 

i- 

ry 11 
e c -lOa,y 4387 + - ala2 

4 
- 385a3 II 

Jry 

aly2 + y3 
14913 

+ - ala2 
4 

- 1078a3 
II 

7845a 
2 II 

JF [- 1155aly3 + & [- 4ogi5g3 a: 

930967 959883a,a2 - 4 a3 

#F[> +$Y [%a: - $$a,a2 + 5a3]] 

< 35 1 xi 1 5J> = rk I 9 Y I 
< 35 I x; 1 5J> = Y& 

1745 -2 
1 -8aly 1 

< 33 I xi 1 5J> = ~6 [fp Y2] 



< 45 1 x; 1 55~ = 

c 45 1 xi I 5x?> = qEi 

< 43 f x; 1 5J> = 
353 
2 ag 

1 

< 45 I x; i 55s = qT (yz y2] 

* J-dependent potential constants 
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+ + 433f + 16281+ 1564 
8 

)& +(23113+ 2997f2+8114501+ 1043: 

105Z3 -I- 1323rZ + 4938Z+ 4536 _ 
16 ) I1 

a:az (oJlx~‘loJ> 

+g(Z-l){l+t[ (3z+414)a;-(4+ Z)a,] 

+g[- (12 + 91+ 23) a,,+ 
( 
"+ 3izt 'O1)alal 

+ 5lr+ 45z+ 100 
( ) ( 

a2 + 73P + 745Z+ 1932 
4 z 64 a’: 

27P + 2632 + 664 _ 
8 Nk7lX~IoJ) (23 

where 7 and ai are the J-dependent potential constants listed in Table 3. 
Explicit results for the first few powers of (OJlx$OJ) are listed in Table 4 
accurate through terms a:. With these, the gU functions, and the J-dependenl 
parameters, one can easily obtain the expectation values (uJ[xZ[vJ). 

Alternatively, one can derive expectation values of x> directly (without 
first finding the gv functions) by employing the hypervirial theorem 1321. 
Starting with the we&known commutator result 

Wl~Z,A]IuJ)= 0 (24 

where A? is the Hamiltonian for nuclear motion and choosing A = xi- * d/dx, 
one obtains 1321 the general relation 

[2(Z - 1) E/y2/B, J <uJlx~*luJ, + 3 [(Z - l)(Z - 2)(Z - 3) y* J<uJlx$-4IuJ) 
(25 

=(uJlx>[BZ+ (2Z+ l)aI(J)xJ+ (2Z+ 2)a,(J)xJ2 + . . . ]luJ> 

The eigenenergies are known through the Dunham expression, E, = &, YI, 
(u + l/2)‘, in which the J-dependent potential parameters are assumed. 
Equation (25) can be solved by an iterative scheme analogous to that used ir 
deriving the gV functions [ 321. The results can be put in the form 

(uJlx>luJ) = c,, (uJlx;‘luJ) + c~,Mlx~IuJ) + cz-,<uJlx~31~J~ (26 

+ C,,Wlxt-41uJ) J 

where the explicit dependence of Ci on Z, u and ai (correct through a,) are 
given in ref. 32. Results for Z up to 6 are listed in Table 5. For the special 
case v = 0, eqn- (26) can be shown to reduce to the previously obtained 
three-term recursion relation, eqn. (21). It is worthwhile to emphasize 
that ah the above results can be extended without theoretical complications 
however, the algebra becomes quite tedious. 

For certain problems, diagonal matrix elements of powers of the inter- 
nuclear separation itself, R”, are required (for example: n = -2 and -3 for 
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treatment of rotational corrections to the rotational constant B,, and the 
spin-spin interaction parameter (cf. section IV)). These are obtainable 
directly from Table 5 with the use of the binomial expansion 

(ZIJIR” IuJ> = 22; o_kq (1 f X)” IUJ) = R; (1 + nWlxluJ> 

+n(n - 1) 
2! 

G~Jlx~lvJ> + n(n - ‘1 tn - 2, (vJfx31uJ) + 
(27) 

3! 
. . . , Ixl<l, 

where sufficient terms in this expression must be retained to assure consistency 
in powers of y. 

C. Matrix elements off-diagonal in v 

Matrix elements of the form Wlx~lv’J> can readily be obtained by 
generalizing the previous arguments. For example, to avoid the tedium of 
lengthy algebraic manipulations necessary for the calculation of the matrix 
elements for higher powers of x~, one can derive a recursion relation 
analogous to eqn. (26) by considering the commutator 

WI [H,[ ~,x~]]lv’J). 

One obtains 1321 

c,(J)+ + 
l(2L + 2) 

2 
a@)x; + . . . Iu’J> 

) 

(28) 

= 41 - 1) w, + E”,) y2(v4xz-2(v’J) + zu - 1) u - 2) (I - 3) 
2% J ‘4 y2 (VJIX~IU’J) 

This recursion equation can be iterated in the manner described before to 
provide all matrix elements for I> Iv’ - vi in terms of those for which I < Iv’ - VI. 
The latter elements, however, must be found by a different method. Two 
alternative ways have been proposed. For instance, one method [18] would 
be to use the gu functions, i.e. 

(vJlx;l V’J, = 
<o~l&j (x.,)[x= + r’~(1 - 3r28(1 + QW1’&~(r,)IOJ) 

coJl[&~(xJ)]210J~~ <oJlr&;J(xJ)1210J~~ (29) 

while another method has been proposed which bypasses the wavefunctions 
by considering quantum mechanical sum rules [ 341. These sum rules relate 
the unknown off-diagonal matrix elements to the known diagonal ones and 
the known (Dunham) energy eigenvalues. Of course, one could always 
resort to straightforward perturbation theory [31]. 

In my event, the most accurate results derived to date for u G 5 and 
I G 6 are listed in Table 6 in terms of the J-dependent parameters. Again, 
extension of this table is straightforward albeit algebraically tedious. 

In order to gauge the accuracy of the above results, matrix elements listed 
in Tables 5 and 6 to u = 4 were computed using the data of Table 1 and are 
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tabulated in Table 7 along with numerical results obtained through a direct 
integration of the Dunham wavefunctions, numerical Morse results with 
9?= = wg /4aezce (denoted Morse spectroscopic, ‘Morse spec’), Morse results 
with ga, equal to the experimental dissociation energy (denoted ‘Morse 
diss. en.‘), R.K.R. results from previous investigations [lo, 111, and finally, 
harmonic oscillator results (both perturbation expansions and single-term 
results). It should be noted that the Morse results depend somewhat on the 
choice of Q’e while the present matrix elements usually fall between*‘. As 
can be seen from Table 7, the analytic matrix elements, generally speaking, 
become progressively less accurate as n increases and as A v increase. For example, 
consider the Au = 2, I = 1 sequence: aside from the normalization factors, the 
leading term (i.e. aI /2) is the same for all elements while the first correction term 
goes as (v’ + v + l)/( IV’ - vl + 1). Since for HCl this correction term has the 
opposite sign from the leading term, the matrix elements will eventually 
change sign; indeed, the (31x15) element will he positive. Cashion’s conjecture 
[11] , on the basis of his results, that the first few elements of any sequence 
have the same sign, is corroborated in the present study for those sequences 
in which the correction term to a given element has the same sign as the 
leading term, and for other sequences only if the correction term and both 
v and v’ are small. 

In general, the analytic matrix elements are in good agreement with those 
obtained by the other methods, and, on the whole, are probably more 
accurate. The only anomalous values in Table 7 are those obtained through 
the numerical integration of the analytic Dunham wavefunctions for the 
orthogonality integral and the matrix elements of low powers of 3c for the 
higher v levels. These spurious results occur because the analytic wavefunctions 
are orthogonal only through terms like a:, while in the numerical results 
contributions corresponding to at, . . . a:” etc. are included and lead to 
unrealistic results. This result demonstrates the necessity of keeping all 
terms consistent to a particular power of y because of large cancellations 
among the various contributions. 

D. Matrix elements off-diagonal in v and J 
By analogy to eqn. (lo), we can write 

(30) 

By defining & (;rJ) through the equation 

&Z’ (xJ) = &$ (3~~ + r2 (P - P’) - 3r4 (1 + al 12) (0’ - 0” )) &Y (Q (31) 

the general vibration-rotation matrix elements can be written 

*In the case of HCl, the best estimate of Be, from thermochemical data 1351 with the 
appropriate zerepoint energy correction, is 37560 i 40 cm-‘, whereas the term 
u:/4wexe has the value 42342 cm*. 
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wl8 (X)IU’J’) = u AWN:: B (XJ + rZB - 3r4 (1 + a, /2) /3*)&’ (XJ) 

&;=‘(~J’)ioJ)jj [(~[&:(xJ)]21t,& <oJi[& (xJr)]2[OJ)t~-1 (32) 

where the @-dependent parameters in Table 3 are to be used in g$$ (z J’) 

and the P-dependent parameters everywhere else. In order to use eqn. (32), 
one need only find the function &c (3~~). As described previously [18] , 

this Call be found directly On t&iIlg the rati0 Of I)J ,-,J’(xJ’) t0 $ ,,J(xJ) Using 
y(x,) and the J-dependent potential constants. The (normalized) result, 
accurate enough for most purposes, is presented in Table 8. 

If we choose u = 0, eqn. (32) simplifies to 

<w 0 (x)lv’& = <w O(xJ + r*fl - 3r4(1 + u,/2) p’) &$ (xJ)id) (33) 

Using this result, the matrix elements listed in Table 6, and the P-dependent 
parameters, one can derive the two lowest-order rotational corrections to 
the pure rotational, fundamental and overtone bands. Explicit results for 
the case of dipole selection rules, viz J = J f 1, have already been published 
elsewhere [29, 371 for u’ = 0 to 4, but for completeness, these are collected 
in Table 9. The leading contributions (i.e., ym and y*m* ) arise essentially 
from a shift of one wavefunction (W) with respect to the other (u’s) 
resulting in a breakdown of the orthogonality of the vibration-rotation 
states. As discussed elsewhere [37], the leading terms remain unchanged 
for hot-band transitions (i.e., v,J + v + u’, J 2 1) while the second-order 
corrections (i.e. T*m) are multiplied by the factor (v + V’ + l)/(lv - v’l + 1). 

The vibration-rotation matrix elements for the dipole selection rule will 
be applied in the following section to an analysis of hydrogen halide spectral 
line intensities. However, before concluding this section, we wish to point 
out that, using the results presented above, one can easily derive the 
vibration-rotation matrix elements corresponding to higher multipole 
selection rules (i.e., A J = 2,3 etc.). 

IV. APPLICATIONS 

In this section, we illustrate possible applications of the analytic vibration- 
rotation matrix elements derived above by two examples; the calculation of 
the vibration-rotation dependence of molecular parameters, and the 
analysis of spectrometric intensity data. 

A. Spinspin interaction 
First, consider the vibration-rotation average which arises from spin- 

spin interaction [lo] 

S 12 - WlR-31uJ~ = R,3(uJI (1 + x)-’ I zJ) 

=R,’ (l+ 6++ 1) (,+ l/2) 
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+ 37’ [-fl++ (+~,+a,~+ +$I,+ 7a;-6a2+ ?a,+ 15) 

--a,u,+ 715 4 175, 5 + 10395 4 -- 3213 a& + 475 + 335 2 - 2 6401 3 2aIa3 4a2 75a4 

+ 1925 a: - 
8 

765 - + 475 + 2295 7 --y&+ 335 665 
2 aa2 3a3 7~~ 7j--al + 

+ 70a5 + ‘%a: - F a:a2 + 350a,a3 + 85at - 60~~ -t yc: 

- 750ala2 f 
700 1125 
3 - 2 a3 + t.2; 17OtZ2 + 490~~~ + y) (u + l/Z) - ‘I) (34) 

Unfortunately, the experimental data [lo] for HCl are not accurate enough 
to warrant the accuracy represented by eqn. (34). [For Hz, however, the 
situation is different, and the above results are in excellent accord with both 
the ab initio results and experiment [32] .] We note in passing, that the 
present results reproduce the Dunham rotational result 

B,(uOl(l -t X)-2l v0) = B, =,$ Y,, (u + i)’ (35) 

through terms of order y3_ 

B. Dipole-moment functions of hydrogen halides 
As a second more extensive application, we analyze the available spectraI 

intensity data (including molecular beam, pure rotation and vibration- 
rotation measurements) for the hydrogen hahdes, and deduce the first few 
coefficienti in the power series expansion of the dipole-moment function: 

M(X) = I: Mix’ (36) 
i=o 

It is well known that the intensity of a given vibration-rotational band 
depends on the square of the corresponding rotationless ~pol~moment 
matrix element, and that this introduces some ambiguity in the set of 
coefficients, Mi. However, this uncertainty can be removed by considering 
the effect of vibration-rotation interaction (Herman-Wallis factor) on the 
individual line intensities, since these vary Iinearly [ 9,371 with the M;. 
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TAKE 8 

J-DEPENDENT PRE-EXPONENTIAL POLYNOMIAL 

_ $ (3 + 7al) 1 

- 7ala2 + 2 
5% 

3 
+212 

4 a1 
-%a2 + 7a 

6 

t 

_ 13 2 
Fa2 + 3a + gala2 - =a1 39 3 _ 2a 13 2 

2 4 --a 3 
3 4 1 + 3a2 - f a - 4 

1 
xJ 

a3 
- $ ala2 + 2 

2 
+ %el 

-ia2+a, i-5 
1 

2 

+yi;i 
403 5 

f 64 al 
391 3 

- 16=la2 
279 2 

+ 16 alp3 
+ 18a,a$ - lla,a4 

- 47 
- a2a3 4 

+u_ 297 4 423 2 
2 a5 + ?@- al - ‘16 ala2 

+ p ala3 



TAl3LE 8 CONTINUED 

235 2 55 +33 
+ -iz a1 - 4 a2 2 % 4 

- 35 a3, 
36 7 2 

67aq a2a3 a5 
- 4 -4 +G-” 

$ 3 2 a4 +5 
16a2-4 ZP: 

ala2 a3 ----+p 
2 SPf 

f 2y2 x2 + (a -3,y2 x3 
J 1 J 

2 
+ Y- 4 I 52 a7 8 4r % - 3 aZ + 7al + r 1 xi 
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TABLE 9 

ROTATIONAL CORRECTIONS TO VIBRATION-ROTATIONAL MATRIX ELEMENTS 

<OJ 1 x1 1 OJ+l> = nl2y2 

< OJ 1 x0 1 1J + l> = + 3a2 - f al - 6 

c OJ 1 x1 1 15 c l> = (13a1+3) - 9 (al+l) 3 

< OJ 1 x2 1 1J -+ I> = - my* + 2m2y2 1 

<OJIx 
0 

+ - 129 
8 

ala2 - 5a 
3 

f 279 
32 

a2 
1 

- F a2 + 18al + 15 I + 2m2y2 I 

< OJ I x7 I 25 t ‘I> = Y 
&? r 

i2my 

+ my*- 
22 

4 
a2 111 - 

7 al 
- 10 += 

4 
-9a: + 8a2 - 9a, - 8 

<.OJ 1 x2-/ 2J+ 1, =-1 

22 

+ - + dz C 9) y (aI 3) 1 
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TABLE 9 CONTINUED 

<OJ1x3[2Jr1> =I 
be 

-3my2 + 3m2y2 
I 

<OJ Ix013Jr,> =q 

I 

+ my2 -izFal+ 363 4 37 16 a*a 12 + 3 + g ala3 17 2 5 8 a2 - q a4 + F a: 

- 24a,a2 + 7a3 a: + 

- 

8a2 

- 

1 Oa, 10 I 

- 

+ m2y2 (al 

- 

3) 1 
3/2 

<OJ 1 x1 /3J+l> =q (1 - a,) 

2 
q- 

L 
717 3 

- Tral + y ala2 - 39a3 - F a: - % a2 + 34a, + 45 
I 

22 

+“y 99 3 

iKal 

+ s 

ala2 

+ 

5a3 

99 2 

4 

- 

al 

21 

- 16 -- 4 a2 - 6a, + 13 Jl 
dJjx213Jt,> =q -2 m Y 

+ my2 
L 
-7a2 + 44 a 1 3 2 -2la, - fEj 

1 
+m2y2 

I 
-~atfi-~a,_$La -4 

1 
fl 
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TABLE 9 CONTINUED 

<OJ 1 x3 [3Jtl> = 
$‘;a $ (27a, 

22 
+ 9) + y (3al - 9) 

1 

cOJ 1 x4 13Jztl> = - 6my2 + 4m2y2 
1 

<OJIx”[4Jk1>=~ 2Jci [r my -32 -- ala2 8 -p+32al+ga2-qal+F a3 5 2 3 3 5 1 

+ 
25 3 

my2 - iKala2 - 
55 2 ala4 
96 ala3 +-XT- 

+ E ala: + $ a2a3 - H a5 
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The potential constants utilized in the current study are listed in Table 
10. These have been calculated from the experimental Ylj by an iterative 
solution of the coupled, non-linear Dunham relations. It is important to 
allow o,, B, and the a, to vary independently in each iterative step, and to 
iterate until convergence is reached (typically six steps). This has not 
always been done consistently in the past [41], and would result in slightly 
different parameters. 

The experimental rotatlonless transition moments (proportional to the 
square root of the integrated band intensities), 

M,” (0) = ~ l”i (nOlx’ loo>, 
i (37) 

which were fitted in deriving the dipole moment coefficients, Mi, are 
collected in Table 1.1, and the resulting coefficients in Table 12. 

To gauge the accuracy of these dipole-moment functions, we have also 
calculated the corresponding Herman-Walk coefficients, C, and D,, 
defined by 

.Fp (m) = 
in M,(V+n J+ I~x'~vJ) 2 

M :+n (0) 1 
5 1+ C,,(v)m + Dnm2 (38) 

The comparisons with experiment are displayed in Table 13. Since these 
results do not depend on any additional input parameters, they reflect 
essentially the internal consistency of the experimental data. Consequently, 
they are indicative of the accuracy of the derived dipole-moment functions. 

The most extensive and accurate experimental data are those for HF and 
HCl. The resulting dipole-moment functions are very similar in form having 
large positive Ml, small M2 and large negative M3 coefficients. This suggests 
that the equilibrium separation in these molecules coincides approximately 
with the inflection point (defined as the point where M2 = 0) on the 
increasing portion of the dipole-moment function. 

On the other hand, the experimental data for HBr are, at present, somewhat 
controversial 1371. The more recent high-resolution measurements have 

TABLE 10 

Parameters of the Dunham potential functions for the hydrogen halides 

Parameter HP” HCib HBrC Hid 

a1 -2.25380 -2.36426 -2.43728 -2.53260 
a, 3.4881 3.6629 3.8458 3.9587 
a3 -4.4983 -4.7063 -5.0447 -5.4927 
a4 4.703 5.215 5.445 5.300 
as -2.909 -5.522 -4.634 -4-310 
7 1.01267 x lo* 7.08350 x lo7 6.39028 x 1O-3 5.64032 x 1O-3 

aref_ 38. bref. 21. =ref. 39. dref_ 40: a,, a2, a3 are generated from experimental Y,j while 
a. end a, are generated from eqn. (6) consistent with a3 (Dunham) = a, (Morse). 
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TABLE 11 

Experimental dipole-moment matrix elements for the hydrogen halides (in Debye units) 

Band HF HCl HBr HI 

1.826526a l.10847f 0.82657’ 0.445k 
9.850 x lO+J 7.12 x 10-x 3.7036 X 10-j -4.016 X lo-” 

O-2 -1.253 x lo-= -7.75 x 10-Q -2.87 x lo-‘j 180x . 10-3m 
O-3 1 628 x 10-3d 
O-4 -3:48 x 10-4e 

5.15 x 10-h -112 . x 10-3m 

O-5 8.79 x lo-se 

aref. 42. bref. 43. %ef. 44. dref. 45. eref. 46. fief. 10. sref. 47. href. 9. iref. 48. jref. 49. 
kref. 50; value deduced from measured DI moment. ‘ref. 51. mref. 52. 

TABLE 12 

Coefficients of the dipole-moment function for the hydrogen halides (in Debye units) 

Coefficient HF HCl HBr HI 

M0 1.80285 1.09323 0.81835 0.445 
M, 1.3935 1.2069 0.6435 -0.0744 
M, -0.0583 0.02386 0.168 0.504 
M3 -0.884 -1.673 -1.95 
M, -0.66 1.6a 
MS -0.68 

aChosen to give best fit for the molecular beam data, (11IMIll) and t21lMi21). 

resulted in intensities approximately one-half those of previous lower 
resolution work for the fundamental band and three-quarters those of the 
2+-O band. However, the self-consistency of the latter measurements as 
judged by the comparison of experimental and theoretical Herman--Wall& 
factors is less satisfactory than the earlier work. In any event, using either 
set of data, one obtains positive first and second derivatives for the dipole- 
moment function 1373. This would imply that R, is to the left of the 
inflection point in HBr. More experimental confirmation is needed to 
clarify the existing intensity discrepancies and to verify the above conclusion 

The situation in HI is even more confusing. There is very strong vibration- 
rotation interaction in the fundamental band indicating unequivocally that 
MO and Ml have opposite signs [Sl] . While the two independent measuremen 
for Mo2 (0) differ [ 291 by 10 %, they both show little vibration-rotation 
interaction. As a consequence of the above, the relative signs of the first 
three coefficients of the dipolemoment function are (+ - +) and this can 
be interpreted in two ways; M. is positive, thus implying that R, is beyond 
both the outer inflection point and the maximum of the dipole-moment 
function; this situation would be somewhat unexpected in the light of the 
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results for the other hydrogen halides. Another interpretation which is in 
better agreement with the trend in the other halides but conflicts with 
physical intuition is that the sign of MO is negative (HI’) for small values of 
R and that the polarity changes near the equilibrium separation. This type 
of behaviour has been established for the covalently bound molecule CO 
where the absolute sign of MO has been determined by the isotopic 
variation of the gyromagnetic ratio 1531. To the best of our knowledge, 
these ratios for HI and its isotopes have not been determined experimentally, 
but would ahow one to discriminate between the above two interpretations. 
Alternatively, ab initio computations (e.g. self-consistent field all-electron 
bases) similar to those already carried out for HF [54] could be useful in 
resolving the above dilemma. 

In conclusion, these illustrations indicate how the analytic matrix elements 
can be used to extract a unique dipole-moment function from vibration- 
rotation intensity measurements. This function can in turn be used to predict 
intensities for ‘hot’ bands and for isotopic molecules. However, great 
caution must be exercised in extrapolation of the results for the prediction 
of higher overtone intensities as the power series expansion for M(X) may 
not converge to the true dipole-moment function. Furthermore, the 
coefficients of the higher-order powers of x have large error limits associated 
with them due to accumulated experimental uncertainties. Nevertheless, 
the accuracy of the present theoretical results suggests that future improve- 
ments depend primarily on the availability of improved intensity data. 

NOTE ADDED IN PROOF 

Since submission of this paper, further results on hydrogen halide intensi- 
ties have become available. Stocker and Goldman [ 551, reanalysing pre- 
viously published frequency and intensity data of HBr, have deduced a third- 
order dipole-moment function in reasonable agreement with that in Table 12. 
(Note that the sign of M3 was omitted in ref. 55; thus M3 should read -3.01.) 
P. Bemage and P. Niay (private communication) have recently obtained new 
frequency and intensity data for lines of the O-2,0-3, O-4 and O-5 bands 
of HBr, and have deduced coefficients through MS in the dipole-moment 
expansion; their first three coefficients are again in good agreement with ours. 
Sileo and Cool [56] have measured emission intensities of HF and DF laser 
lines, and have obtained ratios of rotationless dipole-moment matrix elements 
for many overtone transitions. They analysed their data in terms of sixth- 
order dipole-moment functions for HF and DF separately; the first four co- 
efficients are similar to those listed in Table 12 for HF, but their values of Me 
and M5 differ significantly from ours. Their Mi values lead to C, > 0, where- 
as ours lead to C4 < 0 in agreement with experiment[46]. Also their values 
of Me-M6 for HF differ from those for DF more than would be expected 
because of failure of the Born-Oppenheimer approximation. 



54 

REFERENCES 

1 G_ Her&erg, The Spectra and Structure of Simple Free Radicals, Cornell University 
Press, Ithaca, N.Y., U.S.A., 1971. 

2 G. Herzberg, Spectra of Diatomic Molecules, Van Nostrand, Princeton, N-J., U.S.A., 
2nd edn., 1950. 

3 F. C. De Lucia, P. Helminger and W. Gordy, Phys. Rev. A, 3 (1971) 1849. 
4 W. Kolos and L. Wolniewicz, Rev. Mod_ Phys., 35 (1963) 473. 
5 W. Kolos and L. Wolniewicz, J. Chem. Phys., 41 (1964) 3663. 
6 W. Kolos and L. Wolniewicz, J. Chem. Phys., 49 (1968) 404. 
7 G. Henberg, J. Mol. Spectrosc., 33 (1970) 147. 
8a R. B. Sanderson, Appl. Opt., 6 (1967) 1527. 

b M. F_ Weisbach and C. Chackerian, J. Chem. Phys., 59 (1974) 4272. 
9 R. A. Toth, R. H. Hunt and E. K. Piyler, J. Mol. Spectrosc., 32 (1969) 74 and 85; 

35 (1970) 110. 
10 E. W. Kaiser, J. Chem. Phys., 53 (1970) 1686. 
11 J. K. Cashion, J. Mol. Spectrosc., 10 (1963) 182. 
12 J. L. Dunham, Phys. Rev., 41 (1932) 713 and 721. 
13 P.M. Morse, Phys. Rev., 34 (1929) 57. 
14 J. E. Lennard-Jones, Proc. R. Sot. London, Ser. A, 106 (1924) 463; 107 (1925) 636. 
15a Y. P. Varshni, Rev. Mod. Phys., 29 (1957) 664. 

b D. Steele, E. R. Lippincott and J. T. Vanderslice, Rev. Mod. Phys., 34 (1962) 239. 
16a I. M. Torrens, Interatomic Potentials, Academic Press, New York, 1972. 

b J. Goodisman, Diatomic Interaction Potential Theory, Academic Press, New York, 
1973. 

17a R. M. Herman and A. Asgharian, J. Mol. Spectrosc., 19 (1966) 305. 
b P. R. Bunker, J. Mol. Spectrosc., 35 (1970) 306; 42 (1972) 478. 

18 R. M. Herman, R. H. Tipping and S. Short, J. Chem. Phys., 53 (1970) 595. 
19a W. R. Jarmain, Can. J. Phys., 38 (1960) 217. 

b A. C. Hurley, J. Chem. Phys., 36 (1962) 1117. 
20s R. Herman and R. J. Ruhin, Astrophys. J., 121(1955) 533. 

b R. Herman, R. W. Rothery and R. J. Rubin, J. Mol. Spectrosc., 2 (1958) 369. 
c R. Herman and R. J. Rubin, J. Chem. Phys., 32 (1960) 1393. 
d H. S. Heaps and G. Herzberg, Z. Phys., 133 (1952) 48. 

21 D. H. Rank, B. S. Rao and T. A. Wiggins, J. Mol. Spectrosc., 17 (1965) 122. 
22a A. Kratzer, Z. Phys., 3 (1920) 289. 

b E. Fues, Ann. Phys., Leipzig, 80 (1926) 367. 
c G. Simona, R. G. Parr and J. M. Fir&m, J. Chem. Phys., 59 (1973) 3229. 
d A. J. Thakkar, J. Chem. Phys., 62 (1975) 1693. 

23a H. Harrison and R. B. Bernstein, J. Chem. Phys., 38 (1963) 2135. 
b B. C. Eu and H. Guerin, Can. J. Phys., 49 (1971) 486. 

24 W. J. BaIfour and A. E. Douglas, Can. J. Phys., 48 (1970) 901. 
25 J. M. Parsons, P. E. Siska and Y. T. Lee, J. Chem. Phys., 56 (1972) 1511. 
26 Y. Tanaka and K. Yoshino, J. Chem. Phys., 53 (1970) 2012 and refs. therein. 
27a J. K. Cashion, J. Chem. Phys., 48 (1964) 94. 

b R. J. LeRoy, J. Chem. Phys., 57 (1972) 573. 
28 G. V. Calder and K. Ruedenberg, J. Chem. Phys., 49 (1968) 5399. 
29a R. H. Tipping and A. Forbes, J. Mol. Spectrosc., 39 (1971) 65. 

b J. F. Ogilvie and R. W. Davis, Faraday Discuss. Chem. Sot., 55 (1973) 189. 
30a R. E. Meredith and F. G. Smith, J_ Quant. Spectrosc. Radiat. Transfer, 13 (1973) 89. 

b G. Karl and J. D. Poll, J. Chem. Phys., 46 (1967) 2944. 
31 J. -P. Bouanich and C. Brodbeck, J. Quant. Spectrosc. Radiat. Transfer, 14 (1974) 

1199; 15 (1975) 873; 16 (1976) 153. 
32 R. II. Tipping, J. Chem. Phys., 59 (1973) 6433 and 6443. 



55 

33 R. M. Herman and S. Short, J. Chem. Phys., 48 (1968) 1266; 50 (1969) 572. 
34 R. Jackiw, Phys. Rev., 157 (1967) 1220. 
35 CODATA working group on thermodynamic properties, Z. Chem., 13 (1973) 463. 
36 L Suzuki, Bull. Chem. Sec. Jpn., 45 (1972) 2429. 
37a R. H. Tipping and R. M. Herman, J. Mol. Spectrosc., 36 (1970) 404. 

b R. H. Tipping, J. Mol. Spectrosc., 61 (1976) 272. 
38 D. U. Webb and K. N. Rao, J. Mol. Spectrosc., 28 (1968) 121. 
39a P. Bemage, P. Niay, H. Bocquet and R. Houdart, Rev. Phys. Appl., 8 (1973) 333. 

b D. H. Rank, U. Fink and T. A. Wiggins, J. Mol. Spectrosc., 18 (1965) 170. 
40 S. C. Hurlock, R. M. Alexander, K. N. Rao and N. Dreska, J. Mol. Spectrosc., 37 

(1971) 373. 
41 J. F. Ogilvie and D. Koo, J. Mol. Spectrosc., 61(1976) 332. 
42 J. S. Muenter and W. Klemperer, J. Chem. Phys., 52 (1970) 6033. 
43 R. J. Love11 and W. F. Herget, J. Opt. Sot. Am., 52 (1962) 1374_ 
44 R. E. Meredith, J. Quant. Spectrosc. Radiat. Transfer, 12 (1972) 485. 
45 R. L. Spellicy, R. E. Meredith and F. G. Smith, J. Chem. Phys., 57 (1972) 5119. 
46 G. Rimpel, Z. Naturforsch., 29a (1974) 588. 
47 F. G. Smith, J. Quant. Spectrosc. Radiat. Transfer, 13 (1973) 717. 
48 0. B. Dabbousi, W. L. Meerts, F. H. deLeeuw and A. Dymanus, Chem. Phys., 2 (1973) 

473. 
49 H. J. Babrov, A. L. Shabott and B. S. Rao, J. Chem. Phys., 42 (1965) 4124. 
50 C. A. Bun-us, J. Chem. Phys., 31(1959) 1270. 
51 G. Ameer and W. Benesch, J. Chem. Phys., 37 (1962) 2699. 
52 C. Meyer, C. Haeusler and P. Barchewitz, J. Phys., 26 (1965) 305. 
53 B. Rosenblum, A. H. Nethercot and C. H. Townes, Phys. Rev., 109 (1958) 400. 
54 G. C. Lie, J. Chem. Phys., 60 (1974) 2991. 
55 R. N. Stocker and A. Goldman, J. Quant. Spectrosc. Radiat. Transfer, 16 (1976) 335. 
56 R.N. Sileo and T. A. Cool, J. Chem. Phys., 65 (1976) 117. 


