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Radial matrix elements (vJ 1 xR (v’J’) for k = O-5, v = O-12, Iv’ - v 1 = 04, and J up to 
150 have been calculated for CO using accurate wavefunctions obtained from the numerical 

solution of the SchrBdinger equation with a second-order RKR potential curve. These are 

used in conjunction with a model dipole moment function (a Pad6 approximant which has 

the correct united and separated atom limits and R+ long-range behavior) to analyze the 

experimental intensity data. For all the levels considered, we conclude that an adequate 

representation of the dipole moment function is provided by a five-term power series expan- 

sion. This simplifies the computation of dipole moment matrix elements, typical results of 

which are presented to illustrate the dependence on the rotational and vibrational quantum 

numbers. 

I. INTRODUCTION 

Because of its ubiquity, lasing properties, and isotopic richness (I-4), carbon monoxide 
has been one of the most extensively studied molecules. As a result, at the present 
time, the ground electronic state (X lx+) has the most accurate set of experimentally 
determined vibration-rotation (Dunham) parameters (5). Using these frequency data 
as input, we have computed arrays of radial matrix elements for transitions between a 
large variety of vibration-rotation levels. These can then be used in conjunction with 
dipole moment data deduced from an analysis of the comprehensive laboratory intensity 
data (including results from the pure rotation, fundamental, and first three overtone 
bands) to calculate dipole moment transition moments. The latter results should be of 
particular interest to astrophysicists, as they are necessary, for example, in determining 
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carbon isotopic ratios (6), or computing stellar opacities (7). Because of the ambient 

conditions in these spectral sources (e.g., stars with effective temperatures of several 

thousand degrees), it is necessary to compute the matrix elements for high values of the 
vibrational and rotational quantum numbers. As is well known, the direct extrapolation 
of theoretical expressions valid for low ZJ and J to such high levels can lead to spurious 
results because of the large influence of vibration-rotation interaction (8). 

In the present article, we shall first describe the details of the computation of the 
radial matrix elements. We also present a brief discussion of the form of the dipoIe 

moment function, and conclude that, to a high degree of accuracy for all the levels 
considered, it may be adequately represented by a five-term power series expansion. 
This form facilitates the computation of dipole transition moments, and allows for 

future modifications of the dipole moment function (and, hence, transition 
moments) without recalculating the radial matrix elements. Some typical numerical 
results are presented in the fina section which illustrate the behavior of the dipole 

matrix elements as functions of vibrational and rotational quantum numbers. 

II. RADIAL MATRIX ELEMENTS 

For the ground electronic state of 12C160, radial matrix elements, (1JJ 1 xkl D’J’), of the 
familiar Dunham stretching parameter x = (R - R,)/R, have been caIcuIated using 
“exact” radial wavefunctions obtained by numerical solution of the radial Schrodinger 
equation. The potential energy curve used in these calculations was obtained from the 
E, and B, data of Mantz et al. (2) using the second-order RKR procedure of Kirschner 

and Watson (9, 10). To minimize the effect of interpolation uncertainties, turning 
points were calculated for fractional as well as integral values of the vibrational quantum 

number ZJ (in steps of 0.1 between -0.4 and 1.0 and steps of 0.5 between 1.0 and 37.0). 
The required equally spaced (in R) integration mesh points were then obtained by 

seventh-order Lagrangian interpolation. 
The radial Schrodinger equation was solved using a version of the Cooley-Cashion 

(II, 12) subroutine SCHR developed by Le Roy (13), and the radial matrix element 

quadratures were performed using Simpson’s rule. The range of integration was 0.7 
_< R/R, _< 1.75 and the integration mesh size was AR = O.OOlR,, which is sufficiently 
small to allow for a minimum of 24 mesh points between the closest adjacent nodes of 
any of the radial eigenfunctions considered. All calculations were performed on an IBM 
360/75 computer using double-precision arithmetic. The numerical precision attained 
is indicated by the fact that the radial wavefunctions for different vibrational levels of 
a single effective (centrifugally distorted) potential energy curve were orthogonal to 

better than 0.3 parts in log. In Jarmain’s terminology (14), this corresponds to a Franck- 
Condon “noise factor” of 1 X lO_“. This implies that the radial matrix elements de- 
scribed below should all be accurate to within ca. fl X 1O-g. Physical constants en- 
tered these calculations only through the single factor (15) 

%/(2ghc) = 2.45873935 cm-l A2, 

while the scaling length R, was set at R, = 1.128322555 A5 

6 Calculated within the Born-Oppenheimer approximation from the experimental YOl (Ref. (?)) 
after making the P&m corrections (Ref. (5)). 
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The matrix elements (vJ 1 xk [ v/J’) for K = O-5 have been calculated for the levels 
v = O-12 and (v’ - v) = O-4. For each of these 65 vibrational bands, Q-branch (J’ = J; 
electric dipole forbidden) matrix elements were calculated for J = O-5, and P- and 
R-branch (AJ = - 1 and 1, respectively) matrix elements were generated for each J 
from O-30, and for every second J from 32-150. The 11 765 sets of radial matrix ele- 

ments are tabulated band-by-band, with the Q-branch results being listed separately. 
A 208-page listing of these results is on file in the data depository of the Journal of 
Molecular Spectroscopy and can be obtained from the Editor on request.‘j In the follow- 

ing section, we shall indicate how these results can be used to calculate the dipole 
transition moments. 

III. DIPOLE MOMENT FUNCTION 

In order to calculate the dipole moment matrix elements, one must know the dipole 
moment as a function of internuclear separation. In principle this can be computed 
with ab initio electronic wavefunctions, but, in practice, with the possible exception of 
some hydrides (16), the results currently available are not as accurate as those which 

can be deduced from experimental spectral intensities. The most commonly used pro- 
cedure (17) to obtain the dipole moment function experimentally is to assume a power 

series expansion 

M(x) = C Mix<, 
i-0 

and to fit the coefficients Mi to the measured rotationless matrix elements 

I(@lM(x)lr~‘O)l.A d s iscussed elsewhere, the ambiguity in the signs of the experimental 
values’ can be removed if one takes into account the effects of vibration-rotation 

interaction (17,19). The simple form of Eq. (1) has the advantage that dipole moment 

matrix elements can be written 

(vJ j M(x) 1 v’J’) = z Mi(vJ 1 xi j v’J’), (2) 

so that future refinements in the dipole moment function do not require a recalculation 

of the elements of xi. 
Using the numerical matrix elements discussed in the preceding section and the best 

experimental data currently available, which are listed in Table I, one obtains 

M(X) = - 0.12230 + 3.540~ - 0.323~~ - 3.56x3 + 2.45x4. 

This does not differ significantly from results obtained previously (24) and, because 
of the good agreement with most of the experimental intensity data, should provide 

an adequate representation of M(x) near the minimum of the well. 
However, since Eq. (3) diverges for large x, other forms which have the correct 

asymptotic limits can also be considered. In particular, we shall consider the Pad6 

6 These results will be copied onto a requestor’s magnetic tape by either of the first two authors 
(S. M. K. or R. J. L.). 

r By convention, a negative sign for the permanent dipole moment implies the polarity C-O+. This 
polarity has been determined experimentally and confirmed by numerical calculations (18). For large 
R one would expect the polarity C+O- so that the simplest possible form is that shown in Fig. 1. 
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Table I. Experimental Rotationless Dipole Moment 

Matrix Elements (in Debye)a 

<o~t.ljo- = - a.1mo b 

*O/M] 1, = 1.055 x 10-I c 

COIM!Z> = - 6.53 x xl-3 d 

%OjM13> = 4.24 x 11)-4 d 

cOjM[4> = - 2.011 x 1'1 
-5 e 

aThe relative signs were deterluined through the 

experimental J-dependence (Herman-Wallis factors) 

as discussed in the text. 

bRef. (20). The quantity actually measured was 

[;O,ljMb,l>l which differs from -O:MjO~ hy terms 

of order (B&$ 

%f. (21) 

dRef. (22). 

eRef. (23). 

approximant 

M(x) = 
Mo(1 + ClX + C,XZ) 

1 + CQX + c4x2 + csx3 + C,X6 * 
(1) 

This form has the correct long-range dependence and limit (Z5) and, by requiring 

M( - 1) = 0, it also has the correct united atom limit. The near equilibrium dependence 
is insensitive to the value of C, (over a reasonable range) and the coefficients Ci can be 
adjusted to fit either the (II, 01 M(X) 1 D’, 0) or the 1Mi from Eq. (3). 

Ignoring the term &x6 in the denominator and fitting to the Mi, one can easily show 
that 

-1 0 0 0 ‘-1 1’ 

M,, 0 -Mo 0 0 A41 
MO --MI --M, 0 Mz 7 

0 0 -AI._? -441 --M, Ma 
0 0 -M3 -AI., -M1, ,M.i 

(3 

which leads to the result 

M(x) = 
-0.12230(1 - 27.818~ - 28.818~9 

1 + 1.126~ + 1.128~~ + 0.544x3 + C,xG ’ 
(6) 

(Within the experimental uncertainties, fitting Eq. (4) with reasonable choices of C, 
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FIG. 1. Model dipole moment function for CO in Debye units. Full lines are Pad6 approximants with 
C, = 0, 0.01, 0.05, and 0.1; the dashed curve is a five-term power series expansion. The classical turning 
points for the 11 = 30, J = 0 IeveI are indicated by dashed lines. 

directly to the experimental (~1, 0 / M(x) j D’, 0) leads to the same result.) In Fig. 1 we 
plot Eq. (6) for several values of the coefficient C, (solid curves) and also Eq. (3) 
(dashed curve). As expected, these two forms agree quite well over the most significant 
region around x = 0. Indeed, for B = 30 (approximately 55 000 cm-l above the well 
minimum, and corresponding to xmin s-0.217 and xmux= 0.572, indicated by the 
vertical dotted lines in Fig. 1, the two functions agree to approximately 1% at x,,, and 

to 0.1% at .r,,in. Thus, dipole moment matrix elements (integrals) calculated with 
either Eq. (3) or Eq. (6) agree with each other to well within the experimental 
uncertainties. 

One final point deserves mention. Within the Born-Oppenheimer framework, the 
dipole moment function is independent of isotopic substitution. Consequently, in order 
to generate analogous isotopic dipole moment matrix elements, one has only to re- 
compute the radial matrix elements (z~7/9/ u’J’) for the isotopes or, if less accuracy is 
warranted, one can see from the theoretica results presented in Ref. (24) how these 
elements scale with the isotopic reduced masses. 

IV. RESULTS AND DISCUSSION 

Using the dipole moment function given by Eq. (3) and the numerical radial matrix 
elements, one can calculate the dipole moment matrix elements for all of the levels 
mentioned above. Some typical results are presented in Table II which illustrate the 
dependence on 2’ and J. Several trends are immediately discernible: (1) The Av = 1 
sequence of matrix elements shows very small rotational effects (-1% differences 
between J = 0 and J = 100). This point has been noted previously (24) and is in 
excellent accord with experiment (26). (2) The J dependence becomes more pronounced 
as Ar increases, amounting to as much as a factor of 5 for the higher levels. This be- 
havior agrees with the prediction (27) that the magnitude of the J dependence should 
vary as the difference between the factors D”/(B,)i for the initial and final states, where 
B, and D, are the usual rotational constants. (3) For a given Av, the magnitude of the 
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J dependence is somewhat comparable. The exact numerical results, however, depend 
sensitively on v because of cancellation effects [in Eq. (2)] and the changes in sign of 
some radial matrix elements with increasing J. 

In conclusion, we would like to mention that the above results for radial matrix 
elements can be extended to larger Av or to higher ZJ or J levels with almost comparable 
accuracy. However, in order to calculate the corresponding dipole moment matrix 
elements, a more realistic dipole moment function would be desirable, especially in 
the region of the outer turning point. A reasonable procedure would be to fit C, to 
ab initio results for large internuclear separation where such calculations are relatively 

more accurate (28). Werk in this direction is currently in progress. 

RECEIVED : November 10, 1976 
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