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A general potential energy function for diatomic molecules
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A new and flexible function that is a valid representation of the potential
energy of diatomic molecules within the entire range of accessible inter-
nuclear separations is proposed. This function is shown to be a member of
a family of functions that includes previous polynomial functions having
more restricted validity. Methods of generating the coefficients (par-
ameters) of the new function are described, and tables of these parameters
for a selection of molecules, including some ground and some excited
electronic states, are presented.

INTRODUCTION

The structure of a free diatomic molecule is described incompletely by only its
equilibrium internuclear separation. Because local maxima of electron density in
molecules coincide with nuclear positions, the concept of molecular structure —
such as is incorporated in a bond length — remains valid even without the formal
assumption of separation of nuclear and electronic motions, at least for the ground
electronic state. But this Born-Oppenheimer (192%7) procedure makes possible the
definition of a potential energy function, describing how the electronic energy plus
nuclear repulsion depends upon the internuclear distance. Such a function embodies
a full description of the molecular structure, by definition for a given electronic
state but independent of vibrational and rotational quantum numbers, under con-
ditions in which the Born-Oppenheimer approximation is applicable, namely
absence of curve crossings which cause failure of the molecule to be characterized
according to a single electronic state (Wilson 1979).

The analytic representation of these potential energy functions is an enduring
problem. Although the harmonic oscillator model has long been popular as a
limiting case of diatomic vibrational motion, it is a poor approximation for any real
molecule. More realistic (but still simple) functions have been devised by Lennard-
Jones (1924) and Morse (1929); although these functions display the requisite
qualities of a finite dissociation energy, relative to the energy minimum corre-
sponding to molecular existence, and a rapid increase of energy at distances less
than that of this subsidiary minimum, no real molecule adheres faithfully to either
energy function. On the other hand, the series function devised by Dunham (1932)
has a-flexible form and can represent the potential energy near the equilibrium
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separation within the accuracy of the Born—-Oppenheimer approximation, but fun-
damentally lacks convergence at larger distances. Many other potential energy
functions have been proposed, none entirely successful (Goodisman 1973).

A typical potential energy function is depicted qualitatively in figure 1; here
the entire régime from united atom to separated atoms is shown for carbon(II)
oxide. The absolute minimum of energy occurs about 10~15 m for the united atom
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Ficure 1. Qualitative representation of potential energy of carbon(II) oxide throughout the
range of separations from united atom (silicon) to separated atoms. Note that the

ordinate scale is discontinuous.

silicon, in comparison with which the secondary minimum about 10~ m seems
negligible. Because of the intervening large maximum of energy, corresponding to
internuclear repulsion, the secondary minimum is however significant and thereby
accounts for molecular stability, the discrete existence of a durable molecular
species. This diagram also demonstrates the full range of behaviour that an analytic
potential energy function should ideally encompass. In practice the region less
than 10-12 m may be ignored both because of lack of experimental information by
which such a function might be defined, and because in molecular science the regions
near the secondary minimum are much more pertinent. This diagram also serves
to define, besides the position of relative zero of the energy ordinate, the ‘well’
depth 2. and the equilibrium internuclear separation Re, the primary indices of
a diatomic molecular structure.

In this article a further potential energy function is presented that is in principle
capable of faithfully representing the variation of energy, within the Born-
Oppenheimer approximation, with distance at all separations greater than that
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of the region of the internuclear repulsion maximum. The relation of the new
function to previously existing forms will be discussed, and its application to
various molecules will be demonstrated.

FORM OF REPRESENTATION

We can consider the general form of the potential energy of a diatomic molecule
as a function of some general parameter related to instantaneous internuclear
separation R to be represented as a truncated polynomial or power series of argu-
ment w as follows:

U(w) = d0w2 (1 -+ 2": d,,"w"') .
=1

Then the Dunham (1932) form of function is obtained by taking
w—> 2 = (R— Re)/Re,

in which case the coefficients d;,0 < ¢ < k, are written as a,. Another form of func-
tion was devised by Simons ef al. (1973) with

w—>y=(R—Re)/R
and coefficients here written as b,. A further form is here presented as
w—>2z= (R—Re)/3(R+ Re),

with the coefficients d, written as c,. With this definition of z, each representation
has the same harmonic oscillator limit at R infinitesimally different from R.; i.e.
for R ~ Re, x ~ y ~ 2z and a4 = by = ¢,. In each case the series expansion is made
about R = Re. Thus z = 22/(2+2) = 2y/(2—1y).

The values of the arguments w can be compared at various separations:

w R=0 R =05R, R=R, R = 2R, R »>
x -1 —-0.5 0 1 - o0
y ->—00 -1 0 0.5 -1
z -2 —0.67 0 0.67 -2

Thus of these three arguments, only z remains finite at all separations. Further-
more the vibrational potential has effectively a pole at internuclear separation
corresponding to the united atom limit, R = 0; this pole limits the domain of con-
vergence according to the U(x) function within the range |z| < 1,0r 0 < R < 2R,,
because the point B = R, has been taken as the expansion centre (Beckel 1976).
A singularity in U(y) as B - oo would also limit this U(y) function to a range of
validity |y| < 1, or 0.5Re < R < 0o. Thus the U(x) function is practically useful
only near the minimum of the internuclear potential corresponding to molecular
stability, whereas the U(y) function fails to be usable at the smaller separations
corresponding to distances attainable in, for instance, scattering experiments with
relatively energetic (U > Z.) translational motion. On the other hand, the U(z)
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function treats equivalently the limiting cases of united atom and separated atoms,
i.e. z = + 2, but there is no multivaluedness introduced. Thus of these three series
representations, only the U(z) function is valid throughout the entire range of
internuclear separations pertinent to interatomic interactions.

The substitution p = }(R + R.) converts z into

z = (BR—R.)/}(B+ Re) > p—Re/}p,

which is equivalent to the expansion variable of the U(y) function. Therefore the
quantum-mechanical basis for the U(z) expansion is similarly established (Simons
et al. 1973; Thakkar 1975). It is planned to present wave functions and matrix
elements based on the U(z) potential in a separate article.

DETERMINATION OF COEFFICIENTS C;

For the two model potentials, of exponential or inverse-power types, the
coefficients of powers of z in U(z) can be expressed analytically. For the potential
function due to Morse (1929), which may be expressed in terms of R as

U(R) = De(1 —e~*E—Ee))2 ' g > 0,
the coefficients are
Co = De(aRe)?,

ESE (k4 1)1 (207242 — 911) (— aRe) B
=2"%k+1 - : -
e (k+ )+]-=20 S+ 1—5) (k+2—))! ’

This series converges relatively rapidly, although not monotonically in magnitude
of ¢,. For instance for aRe = 3, a;, = 0.0999, b;, = 0.232 and ¢,, = 0.000306; these
values indicate the relative convergence rates for the three series for this potential
function, which is qualitatively realistic.

Another model potential may be written

k>o0.

U(R) = De[1— (Re/R)"]%;

when n = 6, this is the Lennard-Jones (1924) (6—12)-potential function, whereas
when n = 1, this is the Kratzer (1920) potential. For this potential the coefficients
are

o = N*De,

o = ks 1) 5 P DN 1) [(2n(ﬁ;ﬁ1)!_(n+ir1)!

e 1, k>o.
i=0jlk+1-=5)1(j+2)!n ] g

The coefficients ¢, converge fairly slowly but have alternating signs; in contrast
the coefficients a;, diverge rapidly with increase of either k or %, also with alternating
sign along the series. In the U(y) function, after 2(n— 1) converging coefficients of
alternating signs the succeeding coefficients b, become identically zero.
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Coefficients according to any other desired model potential may be determined
by comparison of (d™U /dR™)g_g, for that function with (d™U(z)/dR™)_g,.

For real molecules, at least four methods exist for the determination of the
potential energy coefficients c; for U(z). The formal interconversion with respect
to a,, or b, can be effected through the following relations, for k£ > 0:

o = kz_;: (2-9) (k:’ 1) g+ 274+ 1),
ae= 5 (-0 (7)ot (-2t ),
oo =% (~ 17 @9 (7 ) buca (- 172K ),
by, = kg;: (2-9) (k B 1) ey + 2K+ 1),

in which () is the combinatorial m!/(n! (m —n)!).

Alternatively the coefficients ¢; may be determined from the Dunham energy
coefficients Y, that result from a vibration-rotational analysis of discrete line
spectra, for which

Ew,J) = L§0KZ=OYLK(U+ HE(J2+J)E.

Such a procedure depends on the energy coefficients Y; x being expressed in terms
of the potential coefficients c,. We have derived expressions for Y, ., L+ K < 6
including terms up to c,, except Y,, and Y,,. By this means, we have been able to
determine sets of c;, for many diatomic molecules, including both ground and some
excited electronic states, for which abundant spectroscopic data exist (as Y, g).
Because of the nonlinear dependence of Y; x on ¢, the method is iterative, until
self-consistency is achieved, which is entirely analogous to the earlier determination
of a; (Ogilvie & Koo 1¢9776), including full statistical analysis of error propagation
and correlation. Comparison of the results from the same set of Y; » for these mol-
ecules according to the same test of convergence demonstrates that fewer iterations
are required (typically about one third fewer) for the ¢, than for the a,. With
sufficient numerical precision carried through all computations, the ¢, obtained
directly from the Y; ;- agree perfectly with those obtained via the a; and the above
interconversion relations. The set of seven, or nine, ¢, (0 < k < 6 or 8) can be further
applied to the prediction of other ¥; z not used in the determination of the c;. The
sets of such Y; g, their estimated standard deviations and correlation coefficients,
as predicted though the c,, are practically identical with those analogously pre-
dicted through the a,, as expected because the Y, x(c) were transformed from the
Y, x(a). Because of experimental inaccuracy inevitably present in determination of
line frequency, and because of the finite number of lines measurable for any molecule,
the calculated Y,z derived from a fitting routine differ from the ‘physical” ¥ x;
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TABLE 1. POTENTIAL ENERGY PARAMETERS OF SOME HYDRIDES
IN X 13 sTATES®

co/10718 J
o/10-22J
€y

Co
C3
Cq
Cs
Cs
C7
Cs

w,/m™1
o/m1!
B,/m™!
o/m-1
Ye/107
o/10-7
k./(N m=1)
o/(N m-Y)
R,/10-2m
/10716 m
D,/10-10 J
o/10-2J

HF(2)
4.06044
+0.0028
—1.253420
+6.7x 107
0.835257
+2.2x 108
—1.761453
+5x10-8
—0.86357
+1.1x10-%
—1.33865
+2.9%10-%
17.195
+8.4x10-%
—40.8160
+2.5x 10~
—17.7354
+7.1x 10~
413925.925
+0.01
2095.5386
+1x10—*
1.01251866
+0.054
966.1303
+4.7%x 105
91.61894
+0.022
9.81001
+1.2

HCl(s)

4.19378
+0.3
—1.3629947
+1.9%x10¢
0.866748
+6.3x10*
—0.49804
+5.5%x 103
0.1727
+0.029
0.2687
+0.044
—1.977
+0.29

2.78

+1.1

4.89

+2.4
299095.95
+0.01
1059.3478
+1.4x10-3
0.7083665
+0.17
516.321
+3.4x10-3
127.45536
+0.81
7.3984
+0.22

HBI"“
4.11779
+1.2
—1.436359
+4.0x 104
0.938771
+3.1x10-3
—0.56019
+0.050
—0.1468
+0.23
1.3143
+0.91
—1.776
+17.0
-9.71
+24
55.07
+47
264931.61
+3.8
846.5002
+1.9%x10-3
0.639033
+0.84
411.652
+0.012
141.4432
+1.6
6.2806
+0.35

HI®

4.066167
+0.34
—1.546119
+3.2x 10~
0.98196
+1.4%x10-3
—0.67305
+0.013
0.6754
+0.097
—0.9333
+0.24
—11.02
+1.0

61.0

+6.4
—84.4
+16.3
230903.92
+0.89
651.1861
+8.3x10-3
0.564.027
+0.16
314.100
+2.4x10-3
160.9056
+1.0
5.12063
+1.4

6)
H,

1.57927
+0.30
—0.592838
+4.6x 104
0.195581
+5.5%x103
—0.37431
+8.6x10-3
0.5832
+0.013
—1.1722
+0.079
2.331
+0.68

439948.66
+4.1
6086.542
+0.097
0.76693
+6.6
574.662
+0.011
74.13737
+5.9
7.60763
+0.01

@ In this and succeeding tables y, = 2B,/w, and k, = 4n2cwim,m,/(m,+m,). All the
9,-values in tables 1-5 come from a combination of the spectroscopic data for zero-point
energy and the best thermodynamic or spectroscopic data for Z,.

@ ¥;x from Huffaker (1977); standard deviations of these were not given, so were here
estimated (probably underestimated).

(3)
(4)

®) ¥k from Guelachvili et al. (1981). )
® Yrx from Buijs & Gush (1971), except Y, , estimated to be —3.0+1.3 m~1,

Yrx for H35Cl from Coxon & Ogilvie (1981, manuscript in preparation for publication).
Y.k for H®'Br from Niay et al. (1977).

this effect is particularly discernible in values of the less accurate Y, ., such as
Y1, Y51, Yao, Y5, resulting from successive determinations incorporating new experi-
mental data (further line frequencies). Naturally this uncertainty affects the
accuracy of determination of the higher a; or ¢, (cq, ¢;, ¢4 etc.), but also affects to a
small extent the lower a, or ¢; because of the complicated dependence of Y, x on
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TABLE 2. POTENTIAL ENERGY PARAMETERS OF SOME FURTHER HYDRIDES
LiH X@® NaH X2 NaH A® OH XW OH A®
co/10718 J 1.306495 1.39053 0.286 39 3.67288 2.89199
o/10-22 +0.255 +3.1 +0.33 +0.196 +9.9
e —0.91026 —1.12648 —1.49313 —1.26062 —1.4874
+1.4x10~¢  +93x10~*  +9.2x10-*  +7.3x10-°  +0.011
0.37545 0.55586 3.3518 0.75574 1.1485
+58x10-%  +3.6x10°*  +7.2x10-%  +4.6x10~%  +0.054
e —0.03537 0.1665 —17.963 —0.4284 —0.9698
+1.4x103  +86x10-2  +0.038 +1.8x10-3  +0.18
e —1.1588 —1.437 86.853 0.1742 —3.91
+4.1x10-3  +0.021 +0.27 +0.010 +0.71
cs 3.1623 1.927 —364.32 0.1335 20.27
+0.060 +0.059 +1.25 +0.047 +2.6
cs —17.145 0.632 1602.9 —1.4786 —18.48
+0.32 0.27 +74 +0.063 +11.8
¢ — — - 2.535 —
— — - +0.24 —
Cg —_ — — 0.510 —
— — — +0.91 —
0,/m-1 140616.5 117154.0 31474.0 373786.53 318195.42
o/m-1 +1.0 +5.0 +1.6 +0.086 +2.5
B,/m-1 751.6033 490.182 171.778 1889.13985  1738.660
o/m-1 +0.010 +0.010 +0.0102 +4.05x 103 +0.54
/102 1.06901 0.83682 1.09155 1.010812 1.092825
o /107 +1.6 +17.4 9.0 +0.27 +35.6
I,/ (N m—?) 102.664 78.0765 5.6352 780.57 565.574
o/(N m-1) +£1.5x102  +6.7x10"*  +57x10"%  +3.6x10-*  +0.087
R, /102 m 159.536 188.732 318.816 97.01614 101.1273
o/10-1 m +10.6 +192 +94.4 +1.04 +157
D,/10-19J 4.03043 3.491 1.85 7.40353 5.401
o/10-2J +0.03 35 20 +0.8 +54

Downloaded from http://rspa.royalsocietypublishing.org/ on June 20, 2017

@ Yk for 7LiH XX from Orth & Stwalley (1979); standard deviations were not given, so
were here estimated.
@ Y7 g for NaH X 1T+ from Orth et al. (1980) ; standard deviations were not given, so were
here estimated.
@ Yy x for NaH AX+ from Orth et al. (1980); only Y;,~Y,, and Y,~Y, were used, and
standard deviations were here estimated.
4) V7., for OH X211 from Coxon (1980).
® Yk for OH A2X+ from Barrow (1956).

these coefficients. The combination of these two effects, namely the distinction
between calculated and true ‘physical’ Y; x, and the sensitivity of lower a,, or ¢,
to the higher Y} 5, causes an uncertainty in the value of other Y; », K > 1, beyond
what is either calculated during the spectral analysis or predicted through the
potential energy coefficients; for this reason there is difficulty in incorporation of
such predicted Y, into the spectral analysis process. Some sets of ¢, for various
molecules, derived from the indicated source of Y, are presented in tables 1-5.
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TABLE 3. POTENTIAL ENERGY PARAMETERS OF SOME NON-HYDRIDES
CN X(l) CN A(l) CO X(2) CS X(S) NO X(4)
co/10-18 J 11.18726 9.516095 12.1066291 10.00224 10.561 362
o/10-22J +0.906 +1.04 +0.0065 +0.25 +0.047
¢ —1.66009 —1.76757 —1.697174  —1.885338  —1.915556
+4.0x 104 +5.2x104 +4.6x 105 +5.5%x 105 +3.6x 105
Cy 0.9985 1.2095 1.210610 1.54239 1.49198
+2.5%x10-3 +3.7%x10-3 +2.5%x 105 +7.3x104 +2.4x 104
Cs —0.3210 —0.57302 —0.50467 —0.6843 —0.4121
+0.038 +0.052 +2.9x 104 +4.4x10-3 +4.4x%x10-3
Cy 0.1143 0.8331 0.3269 0.0727 —0.0625
+0.28 +0.38 +2.0x10-3 +0.046 +0.035
cs —-1.776 —2.666 0.01368 0.1693 —1.3254
+1.67 +5.1 " +8.9x 103 +0.29 +0.27
Ce — — —1.3231 — —3.49
— e +0.041 — +2.2
w,/m™1 206869.41 181326.74 216981.522 128515.49 190412.17
o/m-1 +0.64 +0.84 +4.0x 103 +0.16 +0.039
B,/m™1 189.9732 171.5887 193.128 318 82.00446 170.487175
o/m-1 +1.0x10-3 +1.0x10-3 +7.7%x10-¢ +2.75x10-¢ +3.1x10-%
v./10-2 0.183665 0.189259 0.178013608 0.1276180 0.1790723
o/10-7 ) +0.113 +0.14 +7.8x10-3 +0.016 +0.051
k,/(N m-1) 1629.394 1251.864 1901.88004 849.0625 1594.9834
o /(N m-1) +0.010 +0.012 +6.9%x 10-5 +2.1x10-3 +6.5x10*
R, /1012 m 117.182 123.301 112.8327195 153.4948 115.0792
o /1016 m +3.1 + 3.6 +0.02 +0.26 +0.11
@e/IO“IQJ 12.6616 11.1598 18.01246 11.91113 10.6126
o/10-21J + 30 + 30 +0.4 +2.1 +0.5

@ ¥rx for CN X 22+ and AIl states from Kotlar ef al. (1980).

® Y for CO XX from Dale et al. (1979).
@ Vi for CS X 1Z, ¥,-¥;, from Todd & Olson (1979) ; Yy~ Y, from Bustreel et al. (1979).
@ Yik for NO X211 from Hallin et al. (1979).

A further method of determination of the potential coefficients is by direct deri-
vation from measured frequencies of spectral lines, a nonlinear process not involving
the intermediacy of Y7, (Niay et al. 1977). This method has been directly applied
to ay-determination, but not to ¢,-determination in the present work. In view of
documented difficulties in the fitting of ¥; x to the observed transition frequencies
(Woolley 1976) the procedure of fitting directly to potential coefficients seems to
be the preferred method of spectroscopic analysis, if possible by treating con-
currently all available data from isotropic molecules (Dale et al. 1979). The principal
impediment to such a procedure is at present the limited set of Y, . available.

The fourth method of determination of potential energy coefficients is by fitting
potential energy curves or points arising from other experimental or theoretical
data. For instance ab initio quantum computations, or numerical methods (such as
R.K.R.) from spectral data (Goodisman 1973), may be the origin of such sets of
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TABLE 4. POTENTIAL ENERGY PARAMETERS OF SOME HOMONUCLEAR MOLECULES

Co/10-18 J
o/10-22J

€1
Co
C3
Cq
Cs
Cg
Cq
Cg

w,/m1
o/m~t
B,/m™1
o/m™!
Ye/1072

o /107
ke/(N m~1)
o /(N m™1)
R,/10-2m
0 /10~ m
2.,/1019J
o/10-21 J

Na'z X(l)
0.81282
+0.43
—0.96785
+7.5%x 10
—0.48819
+2.8x10-3
1.0749
+0.021
—1.5342
+0.095
—17.574
+0.33
35.965
+1.5
—17.142
+4.23
—243.1
+12.6
15912.26
+0.15
15.47060
+7.6x 104
0.194445
+0.97
17.1490
+3.3x 104
307.889
+175.7
1.1700
+1.4

Na2 B®
0.61076
+3.4
—0.95603
+0.017
—1.1199
+0.061
—4.942
+0.38
23.04
+1.8
36.66
+5.7
—288.0
+26.6
—69.4
+112
1587
+ 320
12407.8
+2.8
12.5182
+4.1x10-3
0.20180
+7.9
10.427
+4.7x10-3
342.276
+560
0.6138
+1.4

1\{g2 X@
0.13965
+0.67
—3.5909
+9.5x10-3
8.4979
+0.101

©—14.29

+0.73
—17.25
+6.2
261.3
+45.7
—945.6
+ 302

5111.74
+1.2
9.29228
+7.2x10~*
0.363566
+9.2
1.8463
+8.8x 104
388.941
+150
0.085188
+0.015

® Yk for Na, X1Z} and B!, from Demtroder & Stock (1975).

@ Y x for Mg, XX+ from Vidal & Scheingraber (1977).
29 g g 977

® Y1k fitted here to spectroscopic data of Colburn & Douglas (1976).

Ar, X®

0.083973
+6.1

—17.0165
+0.092
35.185
+2.2
—120.1
+33.5
—520.1
+ 322
15044
+2650
— 166850
+ 31600

3183.59
+11.5
5.9940
+2.4x10-3
0.37656
+136
1.1932
+8.6x 103
375.172

+ 753
0.019775,
+0.012

points for either ground or excited electronic states. Monitored by standard statisti-
cal tests of significance, fitting these points directly to the U(z) function will generate
the ¢, coefficients. Alternatively other types of continuous curves from thermo-
dynamic or transport properties, such as the potential function for Ar, (Barker ef al.
1971), might be transformed by equating derivatives as specified above. As an
indication of the relative merits of fitting U(x), U(y) or U(z), we can take as reference
the R.K.R. points for HF (Huffaker 1977); when these were fitted by the same
least-squares routine, the definition of the coordinate transformation merely being
changed from R to z, y or 2, an F-value (statistical distribution function taken as a
measure of goodness of fit (Kendall & Stuart 1979) of 108 was reached with
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TABLE 5. POTENTIAL ENERGY PARAMETERS OF SOME MASSIVE NON-HYDRIDES

082 X Bil X@ Iz X Iz B®
co/10718 J 0.74831 4.9141 6.11574 2.704130
o/10-22J +0.341 + 120 +0.17 +0.043
¢y —1.3433 —2.577 —2.91849 —3.528971
+2.6x 1073 +3.1x1073 +7.7x10-5 +2.8x 106
Cy —0.64864 3.529 3.23326 2.56427
+0.011 +0.055 +3.8x102 +3.6x10-%
C3 4.7102 —3.054 —2.763 —71.7656
+0.73 +0.35 +0.029 +3.7x10~*
Cy —13.815 —229.3 —11.36 952.309
+4.2 +44.3 +0.14 +3.6x10-8
[ 31.13 2158.9 38.55 11785.78
+12.2 +416 +0.69 +0.018
Cg — 140 — _— — 255350
+41.5 — — +0.66
¢ — — — — 125846
— — — +2.2
Cq — — — 2.566 x 107
— — — +85
w,/m1 4202.686 16413 21451.94 12564.96
o/m-1 +0.011 + 20 +0.030 +0.010
B,/m™! 1.17218 2.72228 3.736869 2.89947
o/m-! +5.3x%x10-5 +4.5x 107 +3.0x 107 +1.0x10-?
Vo /102 0.0557825 0.033173 0.034839 0.0461516
o /107 +0.25 +4.04 +4.9x10-3 +3.7%x 108
ko/(N m-1) 6.91544 125.315 172.042 59.0233
/(N m-1) +3.8x 105 +0.31 +0.005 +9.4% 10-5
R,/10712m 465.207 280.051 266.638 302.7033
0 /10716 m + 105 +0.23 +0.11 +0.00053
2,/10712 3 0.63508 4.167 2.49268 0.870334
o/10-21J +1.6 + 40 +0.02 +0.0003

W ¥,0-Y, from Benedict ef al. (1977); Yy~ Y, from Raab et al. (1979).

@ Yix from Kuijpers et al. (1976).

® Yk from Luc (1980) for both XTI} and B3I+, states of 127I,; standard deviations
estimated here.

degrees of polynomial of 8, 7 and 5 for the z, y, and z representations respectively.
In some other cases, the ¥ and z representations were found to be both markedly
superior to that in x. Thus the coefficients c, constitute an economical and accurate
representations of the interatomic potential energy over a broad range of separation.

GENERATION OF FURTHER COEFFICIENTS

Because z remains finite as R — co, boundary conditions may be used to produce
coefficients beyond those defined from, for instance, limited spectroscopic data,
just as for the U(y) function (Simons et al. 1973). The applicable condition is that

[(R2d/dR» U(R)] -0 as R->oo,
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for values of p less than the exponent of limiting behaviour at large R. For such
behaviour according to B—¢, the following five sum rules apply for a finite set of
coefficients, n in number:

(i+2)c, 2141 = 0,
1

I'Ms

7

n
S (i+2)2¢;2024+1 = 0,

t=1

n
S (i+2) (@ +4i+3)0,28/9+1 =0,
2

n
> (+2) (3 + 62+ 1454+ 12) ¢, 23 /3+1 = 0,
i=1

n
S (64 2) (54 + 893+ 2942 + 520+ L) ¢, 28 /75 4+ 1 = 0.

i=1

The finite value of U(z), namely Ze, as B — 0 or z — 2, permits another condition:
n
4c, (1 +3 ci2i) = De.
i=1

False minima in the region 10-14 < R/m < 101, are avoided if coefficients ¢, with
odd subseripts (1, 3, 5, ...) have negative signs whereas ¢, with even subscripts have
positive signs. Use of these equations to generate six additional coefficients results
in spurious maxima or minima in U(z) in the region 0.8 < z < 2, just as previously
encountered in the U(y) function (Simons et al. 1973), but one should not expect
any function to be accurate beyond its range of definition.

DiscussioN

Let us consider a potential energy function of a general type of truncated poly-
nomial,
Uyy,) = di™wh, (1+ 3 dfmwh,),
i=1
in which the argument w,,, becomes a function of two integer parameters m and »
as well as of R and Re:

Wy = (Mm+n) (R—Re)/(mR+nRe).

These relations define a family of functions, of which the case n = 0 corresponds
to U(z), m = 0 corresponds to U(y), and m = n # 0 corresponds to U(z), as de-
scribed earlier. To investigate the relative suitability of members of this family to
fit a particular molecule, we can select the diargon potential (Aziz & Chen 1977),
fairly accurately known over a range of internuclear separation of about three,
and including not only the binding region (U < Ze) but also the repulsive curve up
to U ~ 60009,. A sample of 85 points in the range 2.5 < R/10-1m < 6.7, with
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geometrically increasing interval, was used in a general routine LMM1 for fitting
parameters (Osborne 1976) in which the same initial estimates of parameters d7*
were applied to each set of m and n. Two sets of coefficients, numbering either seven
(dg'™ — dg™) or nine (d§*" — dg'™), were tested. After convergence according to a speci-
fied criterion, we can take the number of iterations and the sum of the squared
deviations from the reference U(R) to serve as indicators of the relative ease and
goodness of fit, respectively. These results, and the limiting values of w,,, corre-
sponding to R = 0 and R — oo, are displayed in table 6. These data demonstrate
that the U(y)-representation is slightly superior in these cases to that of U(z), but
that four times as many iterations are required. In fact neither of these representa-
tions is absolutely the best, but the case m = 4, n = 1 is best for determination of
seven coefficients, whereas the case m = 4, n = 3 proves best for the set of nine
coefficients. Conversion of the resulting coefficients to those of the U(z)-function
may be easily accomplished according to the relations

dg™ = cp & =d"+(n—m)/(n+m),

S R e (=

k > 1. The important conclusion of this section is that U(z), as a member of a new
family of polynomial potential functions defined according to the equation for
U(wpy) above, is a generally useful and justifiable form of function. In particular
cases, the use of other members of the family, although not U(x), may prove advan-
tageous, but only the w,, =2z parameter possesses the desirable equivalence of
magnitude of limiting values (corresponding to R = 0 and R — o) that ensures
convergence within the entire range of accessible, real internuclear separation.

From the tables of sets of coefficients ¢;, we can see that the magnitudes of
¢y, .-+, 5 for the hydrogen halides are smaller than unity, and show similar trends
to the sets of a; published previously (Ogilvie & Koo 1976; Ogilvie 1978). In the
excited electronic states, the corresponding ¢; are almost invariably of larger
magnitude than those for the ground state. Similarly there is a trend of increasing
magnitudes of ¢; with increasing reduced mass for the ground electronic state of
molecules. The sets of ¢, for the four isotopic molecules 12C160, 130160, 1201180 and
13C180 are practically identical, but this result might be expected because the Y, LK
for all these molecules were collectively determined (Dale et al. 1979).

Another approach to the improvement of potential energy functions of diatomic
molecules has been to add and subtract the internuclear coulomb repulsion term
to and from the potential function, one singularity that may limit convergence of
the function thus being removed (Wu & Beckel 1973). Following preliminary
announcement of the present work (J. F. Ogilvie, unpublished report, Research
School of Chemistry, Australian National University, March 1974; paper presented
at Canadian Spectroscopy Symposium, Ottawa, Canada, October 1974 (unpub-
lished); paper ZS4 presented at Molecular Spectroscopy Symposium, Columbus,
U.S.A., June 1976 (unpublished)) the results of Engelke (1978, 1979) have demon-
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TABLE 6. RESULTS OF LEAST-SQUARES ANALYSES OF POTENTIAL ENERGY FUNCTION
OF Ar, X 13F (Aziz & CHEN 1977) FOR VARIOUS ARGUMENTS W, OF THE
GENERAL POTENTIAL FUNCTION

(The limiting values of w,,, at B = 0 and B — o0, and the number of iterations N,; and sum
of squared deviations in the fit S,,/m=2 for either seven- or nine-parameter potential functions
are given for selected values of m and n.)

7 parameters 9 parameters
Wy 6 Wy S — ~ A S

m n R=0 R - o0 NH- Saq Ni+ Saq

0 1 —1 o0 24 1.3x 108 33 5.6+ 10°
1 0 — 1 72 3960 85 7.4

1 1 -2 2 16 1.8x 104 18 50.8

1 2 -3 3 21 3.6 x 10° 21 800

1 3 -2 4 22 2.8 x 108 20 180

1 4 -2 5 20 7.5 % 108 23 1500

2 1 -3 L 17 1.3x 104 29 21

2 3 - L 18 3.0 x 10* 19 480

3 1 —4 2 55 1240 42 16

3 2 -3 2 16 2.5x 10% 18 8.4

3 4 -z z 19 7400 19 310

4 1 -5 s 58 260 60 10

4 3 -2 z 17 2.7 x 104 18 3.6

5 1 -6 8 69 1470 71 8.3

5 4 -2 2 16 2.7 x 104 18 4.2

6 1 -7 z 69 2720 74 8.2

6 5 - 1 16 2.7 x 104 18 6.6

strated that a potential function equivalent to U(z) without the coulomb repulsion
produced the best representation of the potential energy over the entire range of
R in which it could be tested, without the necessity of knowing the dissociation
energy.

For representing the potential energy and for relating the potential energy
coefficients to the energy coefficients Yz, the more complicated functions of
Thakkar (1975) and Engelke (1979), involving a variable exponent parameter in
the argument of a truncated polynomial of type U(w), would seem to have no real
advantage over the present family of potential functions U(w,,,), specifically the
U (z) representation.

The author is indebted to Professor R. H. Tipping for advice and encouragement,
to Dr P. Niay for supplying correlation coefficients for HBr and HI, and to Professor
D. P. Craig, F.R.S., for helpful comments.
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