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Abstract-After a brief discussion of the nature of computer algebra, the facilities of some algebraic or symbolic 
processors are outlined, followed by some instances of applications of important features td problems in physical 
chemistry. 

1. INTRODUCTION 

Among the variety of methods that modern chemists 
apply in their work, numerical computing is well 
established. Through the use of such unstructured lan- 
guages (compilers or interpreters) as BASIC or FOR- 
TRAN or such structured languages as ALGOL or PL-1, 
or Iverson’s array language APL, one can readily make 
numerical calculations to perform such diverse tasks as 
to compute the electronic density distribution of a mole- 
cule according to a quantum theory, to find the ther- 
modynamic properties of a liquid substance by simula- 
tion of the motions of the molecular particles, by a 
Monte-Carlo sampling technique, or to find the velocity 
coefficient of a chemical reaction by regression of some 
function of reactant concentrations with time. In prin- 
ciple, all such computations (i.e. the execution of the 
programs) can be performed by a (patient) human being 
on an abacus. In the history of the development of 
human numeracy, there was long ago discovered the 
capacity to think in a purely symbolic manner. 

Many of the branches of mathematics, such as algebra, 
differential and integral calculus, group theory, etc. are 
founded on such symbolic representations, although of 
course purely arithmetic operations are an essential 
component of any such practice. Perhaps many chem- 
ists, even those familiar with numerical computations, 
may be unaware of both the existence of symbolic 
processors (or languages) to conduct mechanically these 
mathematics (as opposed to primarily arithmetic) and the 
potentially powerful applications of such processors in 
their scientific work. In physics, already extensive re- 
views (Barton & Fitch, 1972; Campbell, 1974; anony- 
mous, 1981; Pavelle et al., 1981) have been published 
with much discussion of applications, and r&ently a 
book (Howard, 1980) with FORMAC and MACSYMA 
programs for aeronautical applications, paiticle 
dynamics, fluid mechanics, cosmological models and tra- 
jectory calculations has appeared. 

In this article we outline some exemplary uses of 
computer algebra in physical chemistry after describing 
briefly some processors and their facilities for such ap- 
plications. So utilised, the computer can be regarded as 
having not only the numerical capabilities of traditional 
scientific computing, but also a word-processing facility 
and knowledge of rules of higher mathematics that per- 
mit it still to execute purely numerically while simulating 
an algebraic or symbolic capacity. 

2. SURVEY OF PROCESSORS 

In fact the first application of symbolic computation 
(Kahrimanian, 1953) dates from the earliest years of 
modern electronic digital computers, at a time that pre- 
ceded active development of FORTRAN in U.S.A. and 
ALGOL in Europe. However the really concerted 
development of algebraic processors started about 1960. 
FORMAC, a formula manipulation compiler, is a super- 
set of PL-1: because its usage is closely similar to that of 
numerical PL-I, it is easy to use by programmers with 
knowledge of this language. Furthermore this for- 
mulation has potentially enormous power due to the 
combination of algebraic and numerical functions. Un- 
fortunately development of FORMAC was terminated by 
IBM before a completely satisfactory processor had 
been achieved; some improvements and enhancements 
were however made during further development in 
Eurooe that resulted in FORMAC-73 (Bahr. 1975). 
Nevertheless both versions are useful. F’ORMAC has 
been distributed in the form of macros that restricted its 
implementation to IBM (or compatible) computers. 

LISP, a list processor, was designed not only as a 
language for instructing computers but also as a formal 
mathematical language primarily for symbolic data 
processing (Berkeley & Dobrow, 1964). In fact the first 
application of computer algebra to physical chemistry 
was in LISP, where wavefunctions were formulated both 
algebraically and numerically in order to check the 
results (Chandler et al., 1968). This language, developed 
at Massachusetts Institute of Technology, is charac- 
terised by a proliferation of parentheses in its typical 
expressions; thus the formal construction of such 
expressions became an impediment to casual use by 
non-professional programmers. But the importance of 
LISP has far transcended its visibIe applications, at least 
for physical scientists, because it has been used as a 
preprocessor or interpreter of programs through its abil- 
ity to generate programs for further execution. 

One processor based on LISP was MATHLAB(68), 
also developed at M.I.T. (Engleman, 1969). This inter- 
active processor enabled such common procedures as 
simplification, substitution, differentiation, polynomial 
factorisation, indefinite integration {of a restricted class 
of functions), direct and inverse Laplace transforms, 
solution of linear differential equations with constant 
coefficients, solution of simultaneous linear equations, 
and a collection of matrix functions for the introduction 

169 



170 J. F. OCILV[E 

or modification of matrices, extraction of sub-matrices or 
elements, matrix arithmetic (addition, multiplication or 
inversion), and extraction of significant properties (rank, 
determinant, characteristic polynomial and trace). 
Development of MATHLAB has been superseded by 
that of MACSYMA, a much more advanced and power- 
ful processor, only recently released for use outside 
M.I.T. 

A product of the University of Wisconsin (Madison) 
was SAC-l, for symbolic and algebraic calculations. This 
system consists of several FORTRAN subroutines and 
functions that can be called in a user’s program to 
facilitate these types of calculations. All the subroutines 
and functions form thirteen different sets of programs, 
called subsystems, each of which is designed for the 
manipulation of a special type of mathematical object. 
The philosophy of the producers of SAC-l was to regard 
the mathem&al objects as lists, so that in principle the 
nromams containing SAC-l extend FORTRAN to 
become a special&d list processing language. The 
availability of SAC-2 has recently been announced. 

A language and system for performing symbolic com- 
putations on algebraic data originating in Bell Labora- 
tories, U.S.A., ALTRAN, algebra translator, has the 
basic capability to perform rational operations on 
rational expressions in one or more indeterminates (al- 
gebraic quantities or variables), with integer coefficients, 
and is designed lo handle very large problems involving 
such data with considerable efficiency. The syntax of the 
language is similar to that of FORTRAN. An attractive 
feature of the language is that it has been itself prepared 
in a very transportable form of FORTRAN, although 
some assembly language primitives for several popular 
computer systems are included on the system tape. Thus 
it is readily installed on almost any computer having both 
a FORTRAN compiler and sufficient core memory. 

Another popular processor for computer algebra has 
been REDUCE (Hearn, 1973). This programming system, 
built on LISP, is capable of expansion and ordering of 
polynomials and rational functions, symbolic differen- 
tiation, substitution and pattern matching in a wide 
variety of forms, calculation of greatest common divisor 
of two polynomials, automatic and user-controlled sim- 
plication of expressions, matrix and tensor operations, 
and spin-; and spin-l algebra for calculations in high- 
energy physics. REDUCE is still in active development 
and has recently incorporated a general integration 
capability. 

Although really satisfactory languages for computer 
algebra reauire both a word length of at least 32 bits and 
a machine-size of at least 32006 words of core memory, 
recentlv two uackaees. MUMATH and PICOMATH. for 
computer algebra have become available for popular 
microcomputers (Stoutemyer, 1980). Despite not being 
capable of extensive computations, these programs 
demonstrate the nature of computer algebra, and are 
appropriate to the context of high-school mathematics. 

There are of course other algebraic processors desig- 
ned for more specialised applications, such as 
SCHOONSCHIP (C.E.R.N., Geneva) for quantum elec- 
trodynamics, CAMAL (Cambridge University, U.K.) for 
general relativity, TRIGMAN for celestial mechanics 
etc., but these are unlikely to be generally useful for 
chemical applications. 

3. APPLICATIONS IN PHYSICAL CHEMISTRY 
Having outlined some available algebraic processors, 

we can now discuss some applications in physical chem- 

istry. Perhaps one should first comment that these pro- 
cessors are likely to be useful for any symbolic com- 
outation of which the method is well understood but for 
khich the operations are tedious to perform. In the 
following paragraphs, we specify some facilities that any 
generally useful algebraic processor must provide and 
give instances of how these have been used. Some 
typical times for the central processor unit, of 
moderately large computers common during the mid 
1970’s, are given as an indication of machine require- 
ments, but of course these will vary depending on the 
particular processor and the machine on which it is 
implemented. 

(1) AlI types of manipulation of polynomials or multi- 
nomials should be possible, although division may be 
dificulf 

Consider the Dunham (1932) potential-energy function 
V(x) in terms of the reduced internuclear separation x: 

V(x) = aoxZ (I + gj &]. 

Sandeman (1940) has given expressions for energy 
coefficients Ykr in terms of ci defined in terms of the 
inverse relationship: 

In order to use Sandernan’s formulae in the usual form 
Yk,(a,), it is necessary to revert the first series to obtain 
ci as a function of u,. This task is easily done in AL- 
TRAN, for instance, and the expressions for crclO, to 
check and extend Wooltey’s (1962) results, require only a 
few seconds of CPU time. 

(2) Diflerentiation should be available 
If we wish to determine the discrete energy states of 

Ar2 from the potential-energy function of Barker et al. 
(1971) from thermodynamic measurements, for instance, 
of the form 

V(X) = E eC”” 5: ,+I’ - 2 f&+,/(6 + (1 + X)2i+6 
,=” 1=0 

we might solve the Schrijdinger equation numerically, 
but the accuracy may be inadequate. Alternatively we 
could differentiate numerically this V(X) function at x = 
0 and equate the derivatives to the Dunham potential- 
energy coefficients 4 as: 

($$-y = a0anm2n!, for n z== 2. 

Numerical accuracy is almost certainly a problem if one 
wanted to determine the twelfth derivative in order to 
obtain al0. Perhaps the most precise approach is to 
conduct the twelve differentiations analytically, with 
“infinite” precision, and then to substitute the values of 
the known Ai and Ci to obtain the desired numbers. The 
latter orocedure reauires about a minute of CPU time in 
FORMAC, for instance, to derive ai up to alo, whereas 
manually even the first eight derivatives constitute a 
day’s work. 
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Another example can be found in determination of 
standard errors of parameters from the standard devia- 
tions of observable quantities. For instance if we wish to 
estimate the significance (Ogilvie & Koo, I976) of some 
set of potential-energy coefficients, 0, f a,“, resulting 
from the experimental error of some set of Ykr 2 CT&, 
then the procedure for error propagation (Clifford, 1973) 
requires the knowledge of values of the derivatives, 
d Y&,/da,. Such analytic expressions for the derivatives 
can be readily generated, in REDUCE for instance, in a 
few minutes of CPU time; in this case furthermore, the 
output can be expressed as statements directly accept- 
able for inclusion in FORTRAN programs in which the 
actual numerical computations are better carried out. 

(3) Substitution 
Some of the most important operations in computer 

algebra are substitutions: these can be local or global, 
they can occur in general circumstances, or an exact 
pattern-matching criterion might be applied. 

As an instance of this type of operation, we can 
consider the generation of the energy coefficients Ykr 
from the rotationless Yku. The latter quantities can be 
determined from solution of the Schriidinger equation 
for a vibrational potential-energy function, that of Dun- 
ham (1932) expressed as 

V(x) = B,iyq 1 + ,g, u,xj 
where y = Z&Jo, The Y&, can be obtained from the 
corresponding Yko by making Z-dependent all the 
parameters of the V(x) function, such that y+ y’, x+x’ 
and a, + ui’ (where the superscript J denotes a depen- 
dence upon the quantum number J of rotational angular 
momentum, not an exponent). For instance, 

al J = a,+ y2[J(I+ l)J{4(a,+ I)-3a,(a,+ 1)) 
+ y’[J(J + I)]‘{. . . I 

Substitution of these J-dependent parameters into the 
YkO has been used to determine all the 84 expressions 
(containing up to alo) of Y,,, up to [_Z(Z+ l)]“. The 
expression for Y1.10 for instance contains 139 terms, 
such as 87091200000n,“a,a,. In a few minutes of CPU 
time with REDUCE, it was possible to double the num- 
ber of expressions found since Dunham’s work (1932). A 
smaller collection of Y,, required nearer an hour of CPU 
time in a numerical computation according to pertur- 
bation theory (Bouanich, 1978), and derivation of Yo.,, 
would probably require a year of manual effort. 

(4) General matrix operalions 
Although some operations on matrices are trivial to 

program, such as addition or multiplication, others like 
inversion or evaluation of the determinant arc less 
simple. 

As an example from crystal chemistry, consider the 
transformation from reduced coordinates (in terms of 
lattice parameters a, b, c, a, p, y) to orthogonal Cartesian 
coordinates (x, y, z) according to a laboratory frame- 
work. While it is convenient to perform symmetry 
operations upon the lattice points expressed in reduced 
coordinates, all calculations of internuclear distances 
rely upon the Cartesian coordinates. Therefore we 
require the following transformation: 

where the elements of R involve the angular parameters 
as follows: 

R,,=l; R,~=cosY; R,3=~~~P; 

R,, = R3, = R,, = 0; 

R,, = sin y; R2, = (cos a - cos f3 cos y)lsin y; 

R,, = k”*lsin y, 

where 

and the unit cell volume 

V = k”‘abc. 

In REDUCE, the statements 

RZN:= R ** (- I) or RZN:= l/R 

produce the results: 

R;,‘= I; R;: = -cos y/sin y; 

R,~=(~~~a~~~-,-sin~ycos~ 
- cos p cos* r)l(k”’ sin y); 

Ryi = l/sin y; R;i = (-cos a +cos p cos y)/k”‘sin 7); 

R;;’ = sin y/k”‘; R;,’ = R;,’ = R_$ = 0. 

Because the transformation matrix is inverted symbolic- 
ally there can be no problems of numerical ill-condition- 
ing to affect adversely the precision of the results. 

(5) Znfegrntion 
Perhaps many chemists labour under the mistaken 

impression that there is no general algorithm for 
indefinite integration. In fact s&h an algorithm was 
discovered by Risch (1969) and imolemented in relation 
to the CAMAL system by Norman (Norman & Moore, 
1977). Now this scheme has been incorporated into the 
REDUCE system, to enable use of expressions compris- 
ing polynomials, logarithmic functions, exponential 
functions, tan and arctan functions, and also to attempt 
to integrate expressions involving error functions, dilo- 
garithms and other trigonometric expressions. For in- 
stance the expression INT(LOG(X), x) will return the 
result X * (LOG(X) - 1). Of course the result can always 
be checked by differentiation. Without this expiicit in- 
tegration facility, one can stilt inchrde the definition of 
integration operators for specific classes of functions. 
Thus integration stages can be incorporated into com- 
puter algebra programs just as easily and naturally as 
differentiation. 

4. CONCLUSIONS 

Computer algebra makes possible a new approach to 
machine solution of problems in physical chemistry. 
Because calculations are exact (of “infinite” precision), 
with no approximations (in principle), and because of the 
direct algebraic form of the results, thus conveying more 
analytical or physical meaning than a mere table of 
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numbers, this approach complements traditional 
numerical computing. 

A distinction as to mode of use of numerical and 
symbolic computing should be stated. Typically one 
develops an extensive numerical program with the in- 
tention of making many production runs with different 
data sets in order to generate lesser or greater quantities 
of numerical results of perhaps uncertain accuracy or 
validity. In contrast, a program of computer algebra is 
typically run once successfully, to produce exact sym- 
bolic expressions probably checked easily (to some 
extent) by inspection, although the resulting expressions 
might later be incorporated into numerical programs to 
produce several sets of meaningful numbers. Computer 
algebra is thus best conducted in an interactive fashion, 
as the user engages in transformations or substitutions 
on the basis of intermediate results in order to produce 
the final output in the most readable form. Although 
algebraic computing may sometimes be relatively less 
efficient than purely numerical computing if only the 
CPU time to yield a given numerical result is considered, 
it is likely that a judicious combination of algebraic and 
numerical computing can produce more reliable and 
meaningful results for many problems of interest to 
physical chemists, accompanied by both greater physical 
insight of the mathematical expressions and a significant 
decrease of programming effort and computer time, than 
can be achieved by numerical programming alone. 
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