NOTE

FURTHER DUNHAM ENERGY COEFFICIENTS OF DIATOMIC MOLECULES

J. F. OGILVIE

Research School of Chemistry. Australian National University, P.O. Box 4, Canberra, ACT 2600, Australia

and

J. P. BOUANICH

Laboratoire d'Infrarouge. Associé au C.N.R.S., Université de Paris-Sud, Bâtiment 350, 91405 Orsay Cédex, France

(Received 31 July 1981)

Abstract-Expressions are given for the Dunham energy coefficients Y_{33} and Y_{42} in terms of the potential energy coefficients a_i, for diatomic molecules. Their use is briefly discussed.

CALCULATIONS In previous papers,¹⁻⁴ the leading terms of the Dunham energy coefficients (Y_{ij}) used in:

$$E_{vJ} = \sum_{l,j=0} Y_{lj} \left(v + \frac{1}{2} \right)^{l} (J^{2} + J)^{j}$$

were obtained for $l+j \leq 6$, except for Y_{33} and Y_{42} . Because of observations for increasing ranges of vibration-rotation spectra of diatomic molecules (e.g. up to v = 7 of HBr⁵ and HI⁶) and increasing precision of measurements, it is essential to have expressions for Y_{33} and Y_{42} , whether the wavenumbers of the spectral lines are fitted directly to either the Y_{lj} or to the potential energy coefficients⁷ a_i such as

$$V(X) = a_0 X^2 \Big(1 + \sum_{i=1}^{n} a_i X^i \Big), \quad X = (R - R_e) / R_e.$$

The following expressions for Y_{33} and Y_{42} have been derived, according to previously used methods:1,4

$$Y_{33} = \frac{B_e^8}{\omega_e^7} \Big[\frac{12620205}{16} (a_1^7 + 3 a_1^6) - 3323565 a_1^5 a_2 + \frac{69039945}{16} a_1^5 - 7743600 a_1^4 a_2 \\ + 1827450 a_1^4 a_3 + \frac{95088015}{16} a_1^4 + 3733845 a_1^3 a_2^2 - \frac{20723535}{2} a_1^3 a_2 + 3761550 a_1^3 a_3 \\ - 908520 a_1^3 a_4 + 6426360 a_1^3 + 5694975 a_1^2 a_2^2 - 2787900 a_1^2 a_2 a_3 - \frac{19195605}{2} a_1^2 a_2 \\ + 4252725 a_1^2 a_3 - 1568160 a_1^2 a_4 + 388080 a_1^2 a_5 + 5437035 a_1^2 - 959640 a_1 a_2^3 \\ + 4167405 a_1 a_2^2 - 3128400 a_1 a_2 a_3 + 803280 a_1 a_2 a_4 - 5826240 a_1 a_2 + 397000 a_1 a_3^2 \\ + 3025650 a_1 a_3 - 1338660 a_1 a_4 + 498960 a_1 a_5 - 129920 a_1 a_6 + 3342720 a_1 \\ - 542520 a_2^3 + 417200 a_2^2 a_3 + 1429155 a_2^2 - 1268700 a_2 a_3 + 511920 a_2 a_4 - 137760 a_2 a_5 \\ - 1786140 a_2 + 243000 a_3^2 - 135200 a_3 a_4 + 1048800 a_3 - 551220 a_4 + 236040 a_5 \\ - 94080 a_6 + 26880 a_7 + 1093920 \Big];$$

482 J. F. OGILVIE *et al.*

$$Y_{42} = \frac{B_e^7}{a_e^8} \bigg[-\frac{65633085}{128} (a_1^8 + 2a_1^7) + \frac{83937105}{32} a_1^6 a_2 - \frac{12154275}{8} a_1^6 + 4182570 a_1^5 a_2 \\ -\frac{50763825}{32} a_1^5 a_3 - \frac{14263515}{8} a_1^5 - \frac{31570875}{8} a_1^4 a_2^2 + \frac{77753025}{16} a_1^4 a_2 \\ -\frac{36821925}{16} a_1^4 a_3 + \frac{14170275}{16} a_1^4 a_4 - \frac{6983775}{4} a_1^4 - \frac{17628975}{4} a_1^3 a_2^2 \\ + \frac{14145075}{4} a_1^3 a_2 a_3 + \frac{8385075}{2} a_1^3 a_2 - \frac{4825125}{2} a_1^3 a_3 + 1113750 a_1^3 a_4 - 444150 a_1^3 a_5 \\ - 1454175 a_1^3 + \frac{3497445}{2} a_1^2 a_2^3 - \frac{13441275}{4} a_1^2 a_2^2 + 3220425 a_1^2 a_2 a_3 - \frac{2665575}{2} a_1^2 a_2 a_4 \\ + \frac{5413725}{2} a_1^2 a_2 - \frac{2683725}{4} a_1^2 a_3^2 - \frac{3546825}{2} a_1^2 a_3 + 986850 a_1^2 a_4 - 455175 a_1^2 a_5 \\ + 191940 a_1^2 a_6 - \frac{3913065}{4} a_1^2 + 979020 a_1 a_2^3 - \frac{2621325}{2} a_1 a_2^2 a_3 - 1564200 a_1 a_2^2 \\ + 1866000 a_1 a_2 a_3 - 849600 a_1 a_2 a_4 + 377580 a_1 a_2 a_5 + 1243140 a_1 a_2 - 447300 a_1 a_3^2 \\ + 385680 a_1 a_3 a_4 - 882000 a_1 a_3 + 543840 a_1 a_4 - 310800 a_1 a_5 + 141120 a_1 a_6 \\ - 64260 a_1 a_7 - 493500 a_1 - 108780 a_2^4 + 251310 a_2^3 - 374175 a_2^2 a_3 + 188115 a_2^2 a_4 \\ - 316950 a_2^2 + 184365 a_2 a_3^2 + 481290 a_2 a_3 - 262200 a_2 a_4 + 115920 a_2 a_5 \\ - 62160 a_2 a_6 + 262905 a_2 - 153300 a_3^2 + 130320 a_3 a_4 - 62160 a_3 a_5 \\ - 240660 a_3 - 32580 a_4^2 + 138300 a_4 - 93660 a_5 + 54600 a_6 - 22680 a_7 \\ + 12600 a_8 - 126420\bigg].$$

These expressions involve potential energy coefficients a_i up to i = 7 for Y_{33} and i = 8 for Y_{42} . Using the values of a_i obtained for HBr⁷ and HI⁸ from an iterative process, we have calculated the following values of the energy coefficients: for HBr,

$$Y_{33} = (-9.3 \pm 3.8) \times 10^{-12} \text{ cm}^{-1}, \quad Y_{42} = (-1.7 \pm 2.4) \times 10^{-9} \text{ cm}^{-1};$$

for HI,

$$Y_{33} = (-2.1 \pm 5) \times 10^{-13} \,\mathrm{cm}^{-1}, \quad Y_{42} = (3.73 \pm 0.38) \times 10^{-9} \,\mathrm{cm}^{-1}.$$

The indicated standard deviations reflect corresponding inaccuracies in a_i through error propagation.⁹ The spectra for the $6 \leftarrow 0$ and $7 \leftarrow 0$ transitions had a precision of $\simeq 0.03 \text{ cm}^{-1}$, whereas later measurements⁸ led to improved precision of $\simeq 0.003 \text{ cm}^{-1}$. When the $6 \leftarrow 0$ and $7 \leftarrow 0$ bands are remeasured with the better precision, the a_i and the predicted Y_{lj} derived from them will be similarly improved. Future measurements may yield accurate experimental values of Y_{33} and Y_{42} , in which case the above expressions may be used both for comparisons to check consistency of the analysis and the effect of truncation of power series.⁹

Acknowledgement-J.F.O. thanks Prof. R. H. Tipping for helpful comments.

REFERENCES

- 1. J. L. Dunham, Phys. Rev. 41, 721 (1932).
- 2. I. Sandeman, Proc. R. Soc. (Edinburgh) 60, 210 (1940).
- 3. H. W. Woolley, J. Chem. Phys. 37, 1307 (1962).
- 4. J. P. Bouanich, JQSRT 19, 381 (1978).
- 5. P. Bernage and P. Niay, Compt. Rendus Acad. Sci. 282B, 243 (1976).
- 6. P. Niay, P. Bernage, C. Coquant, and H. Bocquet, J. Molec. Spectrosc. 68, 329 (1977).
- 7. P. Niay, P. Bernage, C. Coquant, and A. Fayt, Can. J. Phys. 55, 1829 (1977).
- 8. G. Guelachvili, P. Niay, and P. Bernage, J. Molec. Spectrosc. 85, 253 (1981).
- 9. J. F. Ogilvie and D. Koo, J. Molec. Spectrosc. 61, 332 (1976).