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Bounded matrix elements for the quartic-anharmonic oscillator
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A method based on quantum-mechanical sum rules is presented in which matrix ele-

ments of the displacement and the square of the displacement for a general one-

dimensional oscillator are expressed directly in terms of the eigenenergies and the potential

parameters. Matrix elements of higher powers of the displacement can then be calculated

through an exact hypervirial relation. Two important features of the present method, the

rapid convergence and the result that successive approximations are alternately upper and

lower bounds to the matrix elements, make the method useful in those cases for which ac-

curate eigenenergies are known. Sample calculations for the quartic-anharmonic oscillator

are presented and compared with matrix elements obtained by other iterative schemes.

I. INTRODUCTION

Recently there has been a great deal of interest in

the analytical as well as numerical properties of the
one-dimensional anharmonic oscillator character-
ized by the potential'

kx
V(~) +~4

2

Bender and Wu' have shown that the usual

Rayleigh-Schrodinger perturbation series for the
ground-state eigenenergy diverges for all A, & 0.
Subsequently, several authors have obtained approx-
imate eigenenergies by utilizing alternative conver-

gent summation techniques such as Borel-Pade.
Various nonperturbative approaches have also been

explored. For example, Reid has employed the

method of partial fractions, while Biswas et al.
have assumed a trial wave function of the form

P(x) =exp( —x /2) g C„x ",
n=0

(2)

and have solved the resulting Hill determinant nu-

merically for the first few eigenenergies for a range
of values of the anharmonic coupling constant A,.
In a recent paper, Hioe and Montroll have
developed comprehensive analytical approximations
using the Bargmann representation.

Other theoretical approaches have also been sug-

gested. For example, several groups have treated

the problem through a matrix formalism, ' while

Uzes and co-workers' have developed iterative
techniques in order to compute the eigenenergies.

Paralleling these advances in the determination of
accurate eigenenergies, several investigators have

developed methods for obtaining progressively
better upper and lower bounds for the energy levels.

For instance, Bazley and Fox" have exploited the
variational method, while Reid' has used a projec-
tion technique due initially to Lowdin. '

Most of the work discussed above has been con-
cerned with the general properties and energy levels

of the anharmonic oscillator per se, although a few

authors have discussed possible applications to field

theory, ' and to molecular problems. ' For these

applications, one generally needs matrix elements of
various powers of the coordinate x. As is well

known, even if approximate eigenfunctions give

good eigenenergies, this does not guarantee compar-
able accuracy when computing matrix elements. To
circumvent this difficulty, we shall in the present

paper discuss a method for obtaining accurate ma-

trix elements directly from the eigenenergies. The
method consists of deriving rapidly convergent ex-
pansions for "initial" matrix elements (either
(v ~x

~

v') or (v ~x
~

v'), depending on whether
v +v' is odd or even) by inverting a set of
quantum-mechanical sum rules, ' and then generat-
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ing all other matrix elements for the states U, u'

through an exact recursion relation obtained from
the hypervirial theorem. ' The theory will be
presented in Sec. II for a general one-dimensional
potential V(x), and for the specific form given by
Eq. (1) in Sec. III.

Furthermore, it has been shown' that by taking
additional terms in the expansions for the initial ele-

ments, one eventually obtains, alternatively, upper
and lower bounds to these elements. This informa-
tion is especially valuable for gauging the absolute
accuracy of the matrix elements, and is usually dif-
ficult to extract from purely numerical analyses.
Finally, in Sec. IV, we will compute numerical re-
sults for typical matrix elements which illustrate
the convergence and boundedness properties of the
method.

dHP„= —a
2 + V(x) f„=E„g„

dx
(3)

with a=% /2p, the commutator of the Hamiltoni-
an with an arbitrary time-independent operator 8'
satisfies

(4)

For our present purpose it is convenient to choose
IV=[H,x'] (where l =1,2, . . .) whence Eq. (4) be-
comes

II. THEORY

The hypervirial theorem introduced by Hirsch-
felder' expresses a very general quantum-
mechanical result: assuming the time-independent
Schrodinger equation

(E„—E„) ( v'
~

x
~

u ) =2al u' x d V(x)
dx

+4al(l —1)(v'~x V(x) [ u) —2al(l —1)(E„+E„)(u'~xi
~
v)

—a l (l —1)(l —2)(l —3)(v'
(
xi 4

)
u ) . (5)

=( —1)~(v
i
(A, ) i u) (7a)

This is an exact result. For a polynomial potential,
Eq. (5) can be used to generate the matrix elements
of higher powers of x from those of lower powers of
x if the eigenenergies are known.

Sum rules are likewise quite general quantum-
mechanical results which, in contrast to Eq. (5), ex-
press relations between diagonal and off-diagonal
matrix elements for different states. ' Briefly, for
an Hermitian operator A defined recursively,

Ap ——A,
A =[HA, i],

one obtains the well-known results'

S„—:g(E„E„)~(viA i
v—')(v'iA

i
u)

S„+'—=g(E;—E„) +'(v iA iu')(u'iA
i
u)

( —1)'
(v

~
[A„A,+,] ~

u) . (7b)

Again, for our present purpose, it is convenient to
choose Ap ——x or x . The results for the first few
sum rules for these choices are listed in Tables I and
II, where we have introduced the notation
co„„=E; E„, and the v—arious derivatives of V(x)
with respect to x are denoted by primes. Additional
sum rules can easily be derived if needed. Note that
the first two results (closure and the Thomas-
Reiche-Kuhn sum rule) do not depend explicitly on
the potential while the remaining results do. In Sec.
III we shaH illustrate how Eqs. (5) and (7) can be
used to determine bounded matrix elements for the
quartic-anharmonic oscillator.

III. QUARTIC-ANHARMONIC OSCILLATOR

For the potential given by Eq. (1), Eq. (5) becomes

4aAE(1+1)(u'(x'+
~
u) =[(E„E„)—2akl2](v' [x—

~
u)+2al(l —1)(E;+E„)(u'

~

x [ u)

+a l(l —1)(l —2)(l —3)(v' (x [ v) .
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TABLE I. General sum rules: S„'(1)=g„rs'„„j(U ~x
~

U')
~

.

SI(1)

0
1

2
3
4
5
6
7
8

(~')
a

4a[E„(V—) ]
2a (V")
4a'(V')
4z (V" )

8a3t[aV" V""+1.5a(V'") +2(E, V)(V"—) ]~j
4a'( [4V' V"V'"+2( V")'+a[(V"")'—2V"'V""'—2V"V"'"']+4(E„—V)[( V'")'—2V"V'"'] j )

16a ([4(E,—V)'( V"')'+2(E„—V)[2a( V"")'—ay"'V'"" —2V'V" V"']
2 [() 25( yummy)2 yw&iywitsr ( yus)2]

[yt ytt yt ~ tu
+4 yryzrtyntt+2( yn)2yngr]+( ytytt)2j

Inspection of this equation reveals that for a given U and v', only one initial element and the eigenenergies are
needed in order to generate all other matrix elements of higher powers of x. To obtain this initial element,
consider the sum rules discussed above. Using the results listed in Tables I and II and Eq. (8), the first few
sum rules for the quartic-anhaxmonic oscillator are listed in Tables III and IV, where we have introduced the
notation (u'

~

x
~

v )—:(x }„„.These reduce to the well-known harmonic oscillator (HO) results in the limit
A,~O; i.e.,

1/2 i —1

S„'(1) =2a k 1+(—1)' U+-
p 2

(9)
' i/2

2' 'afi' kS„'(2)"o= — [[I+(—1)']U'+ [3—( —1)']u +2]k JM

TABLE II. General sum rules: S„'(2)=g„,&„r0'„„j(u ~x
~

U')
j

S„'(2)

(x') -(x')'
4a(x )

12a'+ 16a[x'(E„—V) ]
Sa [[x V"+xV'+4(E„—V)] j

16a [[4(E„—V) 4xV'(E„—V)+x—(V')2]
16a j[(xy"+3V') ]

96a (t(E„—V)[6(V') +4xV'V" + —,(xy")~]
+a [5V'V"'+8( V")'+xV'V'"'+ —,x V"y"'

+0.5(xV"') + —,x2V" V'"']
j )

16a ( j 8(E„—V)[(xV"'+4V") —0.5(xV"+3V')(xV""+5V"')]
+a [(2xV""+10V"') +2(xV"'+4V")(xV""'+6V"")

—(xV"+3V')(xV"'"'+7V'"")]
+2(x V"+ 3V' )[xV' V"'+x ( V")~+7 V' V"]j ~ )

64a [((E„—V) (2xy"'+SV") 4(E„—V)(xV"'+4V—")[xV'V"+3( V') ]+[xV'V"+3(V') ]—a j 6(E„—V)(x V"'+4V")(xV""'+6V"")+2[x( V") +3V'V" ](xV'"'+ 5 V"')
+2(xV'V'"+4V' V")(xV""+5 V"')+ [xV'V" +3(V') ](xV"'"+6V'"')j

—a'[ —(xV'""~6V"")'+5(xV""+5V"')(xV"""+7V""')
4

+ 2( yr ~ I+4yll)( yilrrrll+Syll ~ frr)]) ]
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TABLE III. Quartic-anharmonic oscillator sum rules: &u(1)=g„m''
I ("

I
»

I

"'} I
.

S„'(1)

(x')
a

—aE„——ak(x )
8 2 2

2a [k+121I,(x ) ]
, ai[—8E„k+72aA. +(144E„A,+7k )(x )~]

4a[48E„}+jk~—24k}(,(x') ]
—a'[( 192Ey'A, +—E,k'+24akA, )+(—144E„kk,+3744a& —,k —)(x )w]

—,a4[( 1008E„kk+ 7488alj.'+ Sk ) + 108)I(112E„A,+ 1 1k ')(x ') ]
—, a'[( —2304Eikij, y201984E„a} 112E—„k +432ak })

+(16128''lj,'+3168E,k'A, —13056ak)j, +127k )(x ) ]

when we make the obvious identification

lim {E„—k(u ix iv]}~(v ix iu}"1

A.~O 3A,

{V +V+i},
k

sum rules, consider the specific example: l =1 and
v is even. This will enable us to find the matrix ele-

ments for all powers of x between states for which
v +v' is odd. With this choice, the sum rules can be
written in matrix form

(10)

and to the quartic oscillator results' in the limit of
k~O. [There are two misprints in Table I of Ref.
18: the coefficient of E„ in S„(1)should read 2/a,
and the multiplicative factor for S„(2) should be
36 864/55. ]

To illustrate the use of the anharmonic oscillator

2
1 1 1

2
CO iy COgy 605' ' '

Xy g

2 2 2 . . . 2
+1v 3u Sv ' ' '

&u5

S„(1)
S„'(1)

$„(1)

TABLE IV. Quartic-anharmonic oscillator sum rules: S„'(2)=—g„,+, co'„„ i (v ix i
v') i'.

S„'(2)

4
15

—[E„—k(x') ]—(x')'

4a(x )
—2Evk 2k2

+27a+ 24Ev+ (x )

32a [2E„—k(x )~]

512
15

Ek2 k'
a2 8E + +(4.5ak)+ —6E k +1353i 3A.—a [( 4E„k+ 54a)1+I(10—ES„A,+9k~)( x) ]

k4—12Ev k + 1482EvaA, — + + 144Ev A, +24Evk —960ak~+ —(

4096 4
11

2048a [72E„1(,+(6E,k )+(—72E„klj,+810a)(, —Sk )(x )~]

5Evk 18726EvakA. - 90801a A,
288E3A, +48E2k2+ — ~ + o a +4.5ak3

3A, 5 5

2 185 652E„ak — E k
21471ak A, Sk
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where all odd matrix elements vanish from parity.
Assuming that the S„'(1) are known [actually, the
matrix element x~ appearing in S„'(1}is not known,
but can be treated as one of the unknowns in the in-
finite set of equations without affecting the con-
clusions of the discussion below's] and finite, Eq.
(11) implies that the squares of the matrix elements

I

lim (co„„P(v'(x (U) ~0.
v ~00

(12)

Thus, one can truncate the infinite set of equations
and obtain the nth approximation to the first n ma-
trix elements

must approach zero faster than any power n of the
energy differences; i.e.,

2
&u1

2
&V3

] 1 0 ~ 0

1V 3v 2n —1V

S„(1)
S„'(1)

(13)

2
&u2n —1

n —1
1V

n —1
2n —1u

Sn —i(1)

In theory, a sufficiently large n can be chosen so
that any desired accuracy can be obtained (provid-
ed, of course, that the eigenenergies are also known
with adequate precision so that round-off errors do
not become important). In practice, however, usual-

ly only a few terms are required to yield reasonably
accurate matrix elements because of the rapid con-
vergence of successive approximations. In fact, for
the harmonic oscillator, Eq. (13}gives the exact re-
sults at each level of approximation. One would
thus expect rapid convergence for small A, (see
below), and indeed the convergence is quite rapid
for the pure quartic oscillator. '

The formal solution to Eq. (13) can be written
since the matrix of eigenenergy differences is of the
form known as an "alternate" matrix and has a
well-known inverse. ' Each element of a given row
of the inverse matrix is a quotient, the denominator
of which is a product of the ordered differences be-
tween the eigenvalues, while the numerators are the
"simple symmetric functions" formed from the
eigenenergy differences with one omitted. Specifi-
cally, we can write for the nth approximation

2=
Xuj =

2I —1,j
I=1

g C,S„'(1),
i=0

(14)

In order to illustrate the method described above
for the calculation of initial matrix elements, and to

where C; is the coefficient of the t" ' term of the
function

n

g'(cocci, „t—1) . (15)
l=1

The prime on the product notation indicates that
the term I =(j +1)/2 is to be omitted. While these
formulas are convenient for numerical program-
ming, they do not shed any light on the bounded-

ness of the successive approximations. As discussed
elsehwere, ' this can be shown to follow from the
Schweinsian expansion' of the formal solution
through Cramer's rule. ' This will be illustrated in
Sec. IV, where we calculate numerical results.

IV. QUARTIC-ANHARMONIC
MATRIX ELEMENTS:

NUMERICAL RESULTS

TABLE V. Successive approximations to the initial quartic-anharmonic matrix elements
using the sum rules from Table III and comparison with results from other methods.

(x)OI (x),'3x 10' (x)AX 10

2
3
4
5
6

Ref. 9
Ref. 10

0.355 862
0.354838
0.354 840
0.354 840
0.354840

0.355 862
0.354430
0.354434
0.354434
0.354434
0.354434
0.354437

0.407465
0.405 379
0.405 387
0.405 387
0.405 387
0.405080

0.508 948
0.505 371
0.505 371
0.505 421
0.435 204
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facilitate the comparison with other published re-
sults, ' we will consider the particular case a = —,,
k = 1, and A, = 4 . The Hamiltonian is thus given by

TABLE VI. Successive approximations to the initial
quartic-anharmonic matrix elements using the sum rules
from Table IV.

H= — + x + x1 d 1 2 1 4

2dx 2 4
(~)04X 10' (x)06@,10

and for the calculation we will assume the eigenen-
ergies published by Li et al. We will only consider
the case where v =0 explicitly, since the other vi-
brational levels can be treated in an identical way.

With the use of Eq. (13) and the sum rules given
in Table III, the successive approximations to the
matrix elements (x )00 and (xoj} for odd j are ob-
tained by increasing the number of simultaneous
equations n,. These results are presented in Table V
along with the results obtained by other workers us-
ing different methods. Analogous reuslts for (x )oj
for even j, obtained through the sum rules in Table
IV, are displayed in Table VI.

Both the rapid convergence and boundedness of
the successive approximations are apparent from
these numerical results. The converged results are
in excellent agreement with those of Li et al. , but
agree less well with those computed by Uzes and
co-workers' by a different iterative scheme. In the
present method, the factor which limits the accura-
cy of the matrix elements is the accuracy of the cor-
responding energy eigenvalues.

Initial matrix elements for other choices of a, k,
and A, can be obtained in the same way. In particu-
lar, it should be noted that in the case for which

0.227495
0.227 500
0.227 500

0.137608
0.136589
0.136594

0.477 154
0.472472
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k (0 the potential is a double minimum well with
a barrier height of k /16K, . The above results are
applicable in this case provided one uses the ener-
gies as measured from the bottom of the well.

Finally, we wish to reiterate that matrix elements
of higher powers of x can be generated from the ini-
tial elements through the exact hypervirial relation
[Eq. (5}]. The use of sum rules, in contradistinction
to asymptotic solutions of the system of Eqs. (5), '

provides a very simple and rapidly convergent algo-
rithm for the calculations of bounded matrix ele-
ments provided that the corresponding eigenener-
gies are known.
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