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PROGRAM SUMMARY

Title of program: YDY84C
Catalogue number. ACET

Program obtainable from: CPC Program Library, Queen’s Uni-
versity of Belfast, N. Ireland (see application form in this issue)

Computer for which the program is designed and others on which
it is operable: any computer having a FORTRAN-77 compiler
and sufficient core (overlaying may be necessary but is easily
effected)

Computer: Univac 1100/82; Installation: Computer Services
Centre, Australian National University, Canberra, A.C.T. 2601,
Australia

Operating system: EXEC-8 or OS1100

Programming language used: FORTRAN-77 with double preci-
sion

High speed storage required: none (16000 words was available
on Univac 1100,/82)

No. of bits per word: 36
Overlay structure: optional
Peripherals used: card reader or input terminal, line printer

No. of cards in combined program and test deck: 5408

* Present address: Bahrain University College, Department of
Chemistry, P.O. Box 1082, Manama, Bahrain.

Card punching code: EBCDIC

Keywords: molecular, dinuclear, potential-energy function,
spectroscopic energy coefficients

Nature of physical problem

The spectroscopic energy coefficients Y, and their derivatives
with respect to the parameters are calculated from a known set
of the parameters: coefficients ¢; (1< j <10) in the potential-
energy function [1], and harmonic vibrational, w,, and rota-
tional, B,, quantities.

Method of solution

Explicit expressions for the contributions to Y;, and their
derivatives are used in a list scanned once in order to generate
the specified quantities.

Restrictions on the complexity of the problem

The length of the program is compensated by separation of the
intensive calculations into ten subroutines that can be overlaid
or executed in segments. Depending on the parameters sup-
plied, the generated values may lie within the range 10610780,

Typical running time
0.9s.

Reference
[1] J.F. Ogilvie, Proc. Roy. Soc. (London) A378 (1981) 287.
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Traditionally the energies of states of neutral
molecules containing two nuclei and associated
electrons have been represented [1] in terms of a
double summation of power series in terms of the
vibrational v and total angular momentum J
quantum numbers,

Ev,,=k§0Igon,(va%)"[J(H1)—A2]’, (1);

here A is a quantum number for electronic angular
momentum that will henceforth be omitted (as
appropriate to Z electronic states). This expression
is not useful for vibration-rotational states close
to the dissociation limit [2], nor where perturba-
tions between electronic states cause irregularities
of energy spacing. Most use of expression (1) has
been simply as a fitting equation with no particu-
lar physical significance attributed to most the
coefficients Y,, [3]. It is, however, possible to relate
the Y,, quantities to potential-energy parameters,
first achieved by Dunham [4] for a flexible form of
function. Sandeman [5] extended Dunham’s theory
and found further expressions for contributions to
the Y,, in the series

Yo =Xyt Ytz tigt..., (2),

where the correction terms y,,, z,,, t,, have succes-

sively coefficients of y? that usually provide for .

rapid convergence of the series; the reason is that
v (= 2B,/w,), effectively the limiting ratio of rota-
tional to vibrational energy internals in the one-
photon spectrum, has typically values within the
range 3 X 1072-3 X 1074,

Where wavenumber or frequency data exist for
isotopically substituted nuclei, then a more general
expression than (1) for the energies of each iso-
topic species is

=L X Y (o + 1) [I(T+ 1), (3),

in which the quantities ¥,/, may be related to a set
of mass-independent quantities U, and A4,
according to the equation [6]:

Ykil = ﬂr(k+21)/2Uk1[l + me( i/ M, + A!;(I/Mb)] »
(4)

In (4) the mass dependence is mostly incorporated

into the factors of reduced mass p, = M, M, /(M,
+ M), M, and M, being the masses of the sep-
arated neutral atoms a and b, but residual mass
effects appear in the small (m, = rest mass of the
electron) correction terms involving the elemental
mass coefficients A%Y (that are of order unity). The
latter correction terms A%P not only include im-
plicitly the Dunham corrections y,;, z.; t4p-.-,
but also take partial account of the failure of the
Born-Oppenheimer approximation of separation
of electronic and nuclear motions. Thus, it has
proved possible to represent the wavenumbers and
frequencies of = 1200 lines of vibration—rotational
transitions of various species of ">*H3>37Cl by
the combination of only 19 U,, and 7 A%;! (that
have statistically significant values); the accuracy
attained in this reduction was = +1 m™! or the
experimental inaccuracy of the measured values
7.

To ascribe a physical meaning to the Y,, or U,,
quantities is possible if these can be related to a
function that expresses how the potential energy V
depends upon internuclear separation R. By this
means for instance, the 19 U,, of HCl were related
{7] to R, the equilibrium internuclear separation
and nine coefficients a i, 0<j <8, of the Dunham
function for potential energy [4]. Recently a new
flexible formulation [8] has been developed to
yield in principle an accurate representation of
potential energy over the entire range of separa-
tions pertinent to molecular existence. Thereby the
new function avoids the fundamental invalidity of
the Dunham function for R > 2R, [9]). The new
function is also of the form of a polynomial, in
argument z=2(R—-R.}/(R+ R,), truncated as
required by a limited amount of experimental (or
other) data:

V(z)=c022(1+ i cjzf). (4)

By computational methods described elsewhere
[10], it has proved possible to determine some 84
expressions for Y,, in terms of the harmonic vibra-
tional parameter ., the rotational parameter B,,
and the coefficients ¢ in (4), 1 <5< 10, with ¢ =
wl/4B,. Of these Y,, expressions, 49 are the
primary contributions (x,, of Sandeman [5]) with
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(2k + 1)< 12; 25 are the secondary contributions
(i) with (2k + 1) < 8; 9 are the tertiary contribu-
tions (z,,) with (2k + 1)< 4, and the other is ¢, ,.
Together they comprise all the possible expres-
sions that contain terms not beyond cl°, ¢,,, etc.
The expressions like Y, ¢ contain 139 terms, such
as 11053360440c%c, (multiplied by 96B!”/wl%);
thus, more complicated expressions containing
terms in c|', ¢,;, etc., would probably be too
cumbersome to be useful. Such a collection of Y,
should suffice to describe accurately the vibra-
tion—rotational energy states that are below about
0.7 of the dissociation limit; beyond this energy
the convergence of the representation (1) is sus-
pect, and alternative representations are preferred
[11].

The coefficients ¢; are usually determined by
means of an iterative procedure [8] from the Y,,,
although the coefficients a; of the Dunham formu-
lation of potential energy have on occasion been
determined directly from the line wavenumbers
[3]- In fact a proper merging procedure [7], with
due account taken of the statistical weighting fac-
tors and correlation, would be entirely equivalent
to the direct procedure [3]. Either the iterative or
the merging procedure requires determination of
the derivatives of the Y,, quantities with respect to
the parameters c¢;, B, and w, for the purpose of
assessment of error propagation from the line
wavenumbers to the ultimate potential-energy
coefficients. Analytic expressions for these deriva-
tives of Y,, have also been obtained [10].

Explicit expressions for the 84 contributions to
the Y,, quantities and their non-zero derivatives
with respect to ¢; (1 <j < 10), B, and «, have been
coded in FORTRAN-77 statements that, with re-
quisite declarations and identifying comments, oc-
cupy 5364 lines of text separated into ten sub-
routines in the program YDY84C. These sub-
routines require to be passed, through COMMON
storage, values of ¢; (1 <j < 10), B, and «,, and in
turn generate the YE(N), 1 < N < 84, values of the
contributions to Y,,, and the ZE(N, I), derivatives
of these YE(N) with respect to the parameters ¢,
(1<1<10), B, (1= 11) and w, (I = 12). The iden-
tifying comments indicate the relation of the YE(N)
and ZE(N, I) to the Y,, quantities, and a third
index p indicates a x,,, ¥;;, 2,4, Or ;, contribution

(p = 1,2,3,4, respectively). A sample driver routine
is supplied that within 44 lines provides for test
purposes values of the parameters for an exponen-
tial type of potential-energy function [12]

V(x)=6.25c2(1 —e 25%), (5)

in which x =2z/(2 — z). Despite the density of
much of the code, the program takes less than one
second of CPU time to execute on a Univac
1100/82 computer in double-precision FOR-
TRAN-77. The output consists simply of a list of
supplied values of w,, B, and ¢, (1 <j < 10), and
then 84 pairs of lines, each pair containing the
identifying index N, YE(N) and the 12 ZE(N, I).
If instead of w, and B, there are supplied to the
subroutines values of U, o (= w,/p'/?) and U,
(= B,/p), then the quantities returned as YE and
ZE will be U, and their derivatives; in this case
the YE(N) and ZE(N, I) with N > 49 (in the latter
five subroutines) should be ignored. In the follow-
ing test run output, sample portions of the results
are shown for demonstration purposes.

For this exponential type of potential-energy
function, all the contributions to Y, , should be
identically zero (proved by analytic substitution)
except Y) o (x; ) and Y, 4 (x,,4). That the typical
values of the other contributions to Y, , are in fact
less than 4 X 10~"° of the magnitude of Y, ;(x,)
is an indication of the numerical precision attained
on the Univac 1100/82, but this factor may be
expected to be dependent on machine.

By means of another potential-energy function,
one can check that the expressions for the Y,
produce the correct values. The function

(2] ©

we
4B,

V(x)=

has the special set of coefficients c;, j > 0, given [8]
by the relations:

.. S G-
=(j+1)/2 +k§] TR (7)

In this case the analytic expressions for the Y,,,
quite simple in form, have been given by Sande-
man [5], and the user of YDY84C can thus easily
check that the numerical values of the quantities
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YE(N) produced by this program correspond to
those of the appropriate Y, from Sandeman’s
formulae, within the precision of the machine.
Although the derivatives cannot be similarly
checked, the YE(N) can be differentiated by in-
spection to check the formulae given in the state-
ments for the ZE(N, I).

One obvious application of these expressions
for Y,, and their derivatives is the determination of
the potential-energy coefficients ¢; in the course of
a spectroscopic analysis, in order to be assured of
the internal consistency and physical significance
of the energy coefficients Y, or U,,. Conversely, if
points of E(R) are found in the clamped-nuclei
procedure of a quantum computation (molecular
orbital or similar method) then fitting the energy
points of a polynomial in z will permit determina-
tion of the coefficients c; that can in turn be used
to generate values of U,, or Y, directly through
these analytic expressions in YDY84C, rather than
by numerical (perturbation) methods. Equivalently
any other method of generating a potential-energy
function that can be transformed to V(z) (8] can
also lead to a spectral line prediction through the

Y,, or U, in YDY84C. For these or other applica-
tions, the ten subroutines of YDY84C can be
simply appended to whatever other routines and
subroutines are required for the user’s purposes.
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