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Several exact recursion relations for expectation values of different operators are derived for the Morse 
potential using the hypervirial and Hellmann-Feynman theorems. These results enable one to express the 
expectation values of other useful operators as series expansions in terms of the dimensionless anharmonicity 
parameter w,x./w •. The present results. obtained without explicit use of the eigenfunctions. are compared 
with similar results derived by other techniques. and it is illustrated how accurate values can be obtained with 
very little computational effort. 

I. INTRODUCTION 

Since its introduction over 50 years ago,l the Morse 
potential has proved useful for a wide variety of prob
lems in many diverse fields. It is one of the simplest, 
two-parameter anharmonic potentials for which one can 
obtain exact eigenenergies. For many purposes, how
ever, one requires expectation values or matrix ele
ments of various operators, and there exists in the 
literature a large number of papers devoted to the 
derivation and applications of these quantities. 2-16 

Many of the previous workers have made explicit use 
of the eigenfunctions expressed in terms of associated 
Laguerre polynomials and have generated complicated 
closed form expressions for the various matrix ele
ments. This complexity, however, had deterred their 
use, and in some cases, because of serious round-off 
errors incurred in the numerical eValuation, leads to 
erroneous results. 16 As a consequence, Simple asymp
totic approximations have been derived that are not only 
much more convenient, but also have sufficient accuracy 
for most problems. 15,16 

In the present paper, we first derive several exact 
recursion relations between expectation values of dif
ferent operators; these derivations are based on two 
general quantum mechanical relations (the Hellmann
Feynman17 and hypervirial18 theorems) that do not re
quire explicit use of the eigenfunctions. 18,19 These re
sults can then be used in an iterative way to obtain power 
series expansions in terms of the dimensionless anhar
monicity parameter w. X. / w. for the expectation values 
of a variety of operators to any degree of accuracy re
quired. We illustrate the method by deriving expres
sions for several of the more useful operators and com
pare these results with those obtained via other tech
niques. Modest accuracy can be obtained with very 
minimal computational effort, and because of the itera
tive nature of the algorithm, the present method is ideal
ly suited for calculations carried out on programmable 
hand calculators. 

a)Permanent address: Department of Physics and Astronomy, 
University of Alabama, University, AL 35486. 
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II. THEORY 

In the present paper, we consider the nonrotating 
Morse oscillator having a reduced mass ~. (If need 
be, rotational corrections can be included in a formal 
but approximate way by defining rotationally dependent 
parameters80,21.) The vibrational eigenfunctions l/JtJ(R) 
satisfy the radial Schrlidinger equation 

_ Ira dZl/J,.(R) _ 
Hl/Jv(R) - - 2~ dR! + V(R) l/Jv(R) -Evl/Jv(R) (1) 

for the Morse potential 

V(R) =D. {1 - exp[ - a(R - R.)]}2 , (2) 

where D. and R. are the depth and the poSition of the 
minimum of the well. Introducing the following nota
tion: 

q=R-R. , (3) 

y =(l-e-·G) = 1-Z , (4) 

(8~D )1/81 w s= ~ -=-=--- , 
Ir a w.X. 

(5) 

and 

u=v+1/2 , (6) 

the eigenenergies can be written as 

(U u) EtJ=4D. S - Sf • (7) 

The diagonal hypervirial theorem16 for any time-inde
pendent operator W expresses the general commutator 
result 

f l/Jv[H, W]l/JvdR =(vl [H, W]lv) 

=(vIHW - WHI v)=o , 

where H is the Hamiltonian operator in Eq. (1). By 
chOOSing 

and 

d 
W=y'

dq 

(8) 

(9) 
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k 

o 
1 

2 

3 

(v I yk I v) 

1 

2u/S 

2u/S 

(6u2 _ 1/2)/S2 + (_ 4u3 +u)/S3 

4 (6u2 + 3/2)/S2 + (_ 4u3 _ 3u)/S3 

5 (20u 3 -15u)/S3 + (_ 30u4 +4002 _ ~7)/S4 

+ (1211 5 _ 30u2 + 2; u) /S5 

6 (20u3 + 2OO)/S3 + (_ 30u4 _ 700 2+ 2:5)/S4 

+(12u5+50u3_ 2:5 u)/S5 

7 (70u4-175U 2- 5~5)/S4+(_168uS+700u~_ 3~5u)/S5 

+ (140u6 _ 87004 + 3885 u 2 _ 1125)/S6 
4 16 

( 
1295 1125) 7 + -40u7+350u5_-2-u3+-8-u /S 

8 (70u4+24OO2+ 3!5)/S4+(_168uS_980u 2 + 33:1 u)/S5 

(140u6 1225 4 20811 2 18207);, 6 + +-7- u --4- u +16" S 

W=yJ , (10) 

one can derive the following exact recursion relation12•19: 

(vi yk+
2
1 v) = (vi yk+

1
1 v)+ (k+k1)sa{k

2
+4US(1- ~)}(vl ykl v) 

- (k: 1)S2 { (3k
2 

- 3k + 1) + 4uS (1 - ~ )}(v I yH I v) 

3k(k _1)2 ( I k-21) k(k -l)(k - 2) ( I k-SI ) 
+ (k + 1)S2 v y v - (k + 1)S2 v y v, 

k =0,1,2... . (11) 

This result is equivalent to the expression derived by 
Requena et aI.12 except for two minor misprints: The 
left-hand side of their Eq. (9) should be multiplied by 
a, and the coefficient of the next to last term should 
read aas not aSa. 

Inspection of Eq. (11) reveals that expectation values 
for all powers of y can be deduced if one knows that for 
y2 (or y). 

The easiest way to find this expectation value is 
through the Hellmann-Feynman theorem17 

~=(vl aH Iv)=(vl y2Iv)= 2u , 
aDs aDs S 

(12) 

where we have used Eqs. (5) and (7). Explicit results 
for the first few powers of yare given in Table I. These 

results for k = 0-4 agree with those derived by Huffaker 
and Tran14 by a factorization technique and can easily be 
extended if higher powers are required. 

We note, in addition, that for the special case 
v=0(u=1/2), Eq. (11) reduces to the simpler result 

(01 ykIO)=_ (k-2) (01 yHIO)+ (k-1) (01 yk-210) 
S S (13) 

as given in Ref. 14. 

By analogous methods, with alternate choices for W, 
one can deduce the two similar relations 

where 

and 

2u 
(vIZlv)=(vl(l-y)lv)=l- S 

_ (k -1) 4u (1 _ ~) (v Iqk-2 1 v) 
aSS 

(k - l)(k - 2)(k - 3) ( I k-41 ) 
- aS2 vq v. 

(15) 
The application of the above results to the calculation 
of expectation values of different operators will now be 
illustrated. For this purpose we consider the choice of 
operators recently discussed by Vasan and Cross16; 
specifically 

(16) 

and 

for 1=1,2, and 

M~-P)(f3) = (v I ZB I v) = (v I ext{ - (ja(R - Rs)] I v) (18) 

for an arbitrary (j. 

From Eq. (4), one can write the series expansion for 
the displacement coordinate q 

q=.!. L ~J 
a 1"1 J 

(19) 

and thus express M!!) as 

M!!) = -A (vi (:E ~J)' Iv) • 
a J-1 J 

(20) 

Using the results from Table I, one finds the asymptotic 
expansion 

Mil) = ....!.{3U + (:iu 2 + ~)Js 
.111 as 2 24 ~ 

+( 5us+ 3:)/S2+( 31 u4 + 1; u2 _ 9~~)/SS+ ... }. 
(21) 

The first two terms are identical to those given by Vasan 
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TABLE II. Numerical comparison of 
asymptotic formulas for various expecta-
tion values with exact values for H2• a . 
tI MIt) ... At. 2) 

IN 
MleD) ... ylt) 

IN 

0 2. 199-2b 8.486-3 1.085 7.026-3 
2.199-2 8.486-3 1.085 7.026-3 
2.199-2 8.476-3 1.087 7.033-3 

1 6.802-2 2.911-2 1. 282 2.022-2 
6.802-2 2.911-2 1.282 2.022-2 
6.799-2 2.911-2 1.289 2.025-2 

2 0.1173 5.594-2 1.527 3.218-2 
0.1173 5.598-2 1.529 3.219-2 
0.1172 5.575-2 1.542 3.230-2 

3 0.1703 9.024-2 1.838 4.288-2 
0.1702 9.001-2 1.841 4.288-2 
0.1703 8.964-2 1.859 4.320-2 

4 0.2275 0.1336 2.237 5.224-2 
0.2273 0.1327 2.239 5.225-2 
0.2281 0.1325 2.260 5.293-2 

5 0.2896 0.1881 2.759 6.022-2 
0.2890 0.1856 2.746 6.024-2 
0.2917 0.1867 2.769 6.150-2 

6 0.3574 0.2563 3.453 6.676-2 
0.3559 0.2582 3.391 6.680-2 
0.3626 0.2549 3.420 6.892-2 

'5 = 37.1586, a = 1. 8719 A-l. 
bTop line is numerical integration (Ref. 
16); the second line is from formulas 
(21). (22). (29). and (30); the bottom line 
is from the corresponding approximate 
formulas given in Ref. 16. The nota-
tion 2.199-2 indicates 2.199x 10-2• 

and Cross, while these authors approximated the third 
term as (u + 1/2)4/S2 by neglecting higher-order terms 
and fitting to results obtained by direct numerical inte
gration. Similarly, one obtains for M!!) 

(22) 

Again, comparison of this result with the analogous ex
pression from Ref. 16 reveals some small differences: 
they give the coefficient of S-l as 12u2 + 3/4, while 
they approximated the third term by 15(u + 1/2)4/4 
and neglected higher-order contributions. These differ
ences are negligible for low vibrational levels, but in
crease as v increases, and become significant especially 
in those cases for which the expansion parameter S-l 
= (w. x./ w.) is appreciable. In this event, additional 
terms in the series [Eqs. (21) and (22)] may be required 
if high accuracy is desired. 

USing the numerical values for S and a appropriate to 
Hz as given by Vasan and Cross18 (37.1586 and 1. 8719 
A-I, respectively), we obtain the values through Eqs. 
(21) and (22) as presented in Table II. Also shown are 
the results obtained by numerical integration and through 
the approximate formulas of Vasan and Cross. 18 

One can also compare the above results [Eqs. (21) 
and (22)] with similar expressions derived for the more 

general Dunham potential19•22 

V(R) =aox2 (1+ ~ atxJ) , 

where 

X= R -R, 
R. 

(23) 

(24) 

by using the following identifications19 in the Dunham re
sults: 

and 
2H2 

')'= 2B,/w" = a2S . 

(25) 

As expected, the results are identical to the order of 
approximation carried out. 

Next, consider the expectation values Y!!). From Eq. 
(15) with k = 2, one obtains the exact result 

(vlq(y2 _ y)1 v)= ~ (vi y2J v) - ~ (1- ~)= :(~ -1) 
(26) 

Thus, from Eqs. (17) and (26), one has the identity 

yIZ) = yU) + 2u (2u _ 1) 
IN IN aSS 

(27) 

and, therefore, we will only consider y!!) explicitly. 
Rewriting Eq. (17) and substituting in for q the expansion 
in terms of y, one obtains 

y!!) = ! (v 1(1 - y) L (Y:) I v) 
a }-1 J 

1 ",2 ",3 ",4 
= - <vi y - -"'- - -"'- - -"'- -···1 v) 

a 1'2 2'3 3·4 
(28) 

Again, using the results from Table I, this becomes 

y!!) = ~ {u +( _ 3~2 - 2~)/s 

+(_h3)/S2+(_ ~U4+ ....!.u2 + ..:L)/S3+ ... } (29) 
12 24 960 

that differs from the corresponding expression published 
by Vasan and Cross in that these latter authors give the 
coefficient of the second term as (-i u2 - to) and neglect 
higher-order terms. Numerical comparisons of these 
results for H2 are also presented in Table II. 

Finally, consider the expectation values M!..GP) (13). 
For integer {3, one can obtain an exact result through Eq. 
(14). Forthe oonintegervalue (13 = 1. 35424) considered 
by Vasan and Cross that is appropriate to the repulsive 
potential for H" + Hz, 18 one can use the binomial expan
sion 

M:"'GP)(I3) =(vIZBI v) =(vl (l-yf Iv) 

= (v 11 -l3y + 13(13 - 1) y2 - ... I v) 
21 

= 1 + 13(13 - 3) u/S + f3({3 ~~2(f3 - 2) 

x [(13 - 3)(6u 2 +i) +(- 24uz+ 2)]+ ••• (30) 
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Expansion of the result given in Ref. 16 

M CaD)(Q) {{3({3 - 3)u (4{3 + ll)(u + 1/2)2 } 1 {3({3 - 3)u 
l1li ~ = exp S + S2 "" + S 

+ iz [(4{3 + ll)(u + 1/2)2+ {32({3 -23)V] + ••• 

(31) 
again reveals slight differences in the coefficients of the 
S-2 and higher terms. Keeping the contributions through S-., we obtain the numerical results shown in Table II. 

III. DISCUSSION AND CONCLUSIONS 

By means of the diagonal hypervirial and Hellmann
Feynman theorems, one can generate simple closed 
form expressions for the expectation values of (e-4Q

)' 

and (1 - e-GG)' for the Morse oscillator by a recursive 
method that obviates the need for explicit eigenfunctions 
or complicated integrations. These results can then be 
used to generate series expansions for other expecta
tion values of interest. As can be seen from the nu
merical values in Table II, accurate results can be ob
tained with relative ease. Furthermore, since the ex
pansion parameter S-l is larger for H2 than for most 
other realistic problems of interest, the results given 
by Eqs. (21), (22), (29), and (30) shOuld provide suffi
cient accuracy for low or moderate (u < S) vibrational 
quantum numbers for most applications. 

Finally, before concluding, we would like to point out 
that since the algorithms for calculating (v I yo" Iv), M!!), 
y!~), etc. are recursive, they are easily programmed. 
One can make use of this method not only to avoid nu
merical complications arising from multiple summations 
and cancellations occurring in some of the closed form 
representations of the expectation values, 10,11,16 but also 
by means of computer algebra, 23-26 derive alternative 
analytical expressions. Extensive results obtained in 
this manner will be published elsewhere. 2s 
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