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Abstract-A Monte-Carlo approach to error propagation from input parameters of known variance (and 
covariance if available) properties through an arbitrarily complicated analytic or numerical trans- 
formation to output parameters is discussed. A simple random-number generator for a rectangular 
distribution function is shown to Drovide an economical and fairly efficient means of simulating the effects 
of using a normal distribution f&&ion. 

1. INTRODUCTION 

It is a truism that a numerical value of some physical 
quantity is meaningless without an estimate of its 
accuracy. Yet chemists have commonly been negli- 
gent in this aspect of their presentation of results 
(Quickenden & Harrison, 1982). 

There are three main kinds of procedures that lead 
to numerical results. In the first kind, data directly 
from experiment, there are simple and direct means of 
assessing the inaccuracy, by repetition of mea- 
surements and by means of either graphical treatment 
or fitting by least-squares routines; for the latter, 
polynomial and multiple linear regression analyses 
(O&vie & Abu-Elgheit, 1982) can be easily carried 
out on minicomputers or even microcomputers. By 
these methods one can readily generate some estimate 
of the accuracy of the parameters related to sources or 
random error, but not systematic error and blunders. 
A second kind of procedure is a purely theoretical 
prediction of the magnitude of some quantity, such as 
an nb iniiio molecular-orbital computation of a mo- 
lecular structure. Such calculations may be in prin- 
ciple exact, within the numerical precision of the 
computer, but any discrepancies with respect to pre- 
cise and reliable experimental values may be attrib- 
uted to inadequacies of the mathematical model of the 
physical system being simulated. In such cases, to 
make a precise estimate of the accuracy, in the sense 
of a standard deviation for a particular parameter, 
becomes very difficult, but orders of magnitude may 
be estimated, possibly on the basis of comparisons of 
previous theoretical results with existing experimental 
data. 

The third kind of procedure involves the applica- 
tion of a theoretical model to interpret some experi- 
mental results in terms of a general theoretical func- 
tion. An instance of this is the derivation of the 
parameters of a general potential-energy function of 
a diatomic molecule from wavenumber data for 
vibration-rotational transitions in infrared spectra; in 
this case the relationships between the potential- 
energy coefficients (c, in the flexible function of 
Ogilvie (198 1)) and the energy term-value coefficients 
Y,, are of a simple form, although the actual expres- 
sions can be quite long (Ogilvie, 1983); the well 
established methods of error propagation (Clifford, 
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1973) can be used to relate the standard deviations of 
the Y,,, directly assigned from experimental data, to 
those of the coefficients cj (Ogilvie % Koo, 1976). In 
other cases, the relationship between the primary 
experimental quantities and the meaningful the- 
oretical functions may be much more complicated, 
perhaps involving matrix inversions. Thus the equa- 
tions required in the procedure for error propagation 
(Clifford, 1973) may become practically intractable, 
although in principle it may be possible to generate 
and to apply them. Moreover, the set of equations 
connecting the two levels of quantities is specific to 
the particular problem. Therefore a practicable 
method of error propagation without these disadvan- 
tages is desirable, and is proposed in the following 
sections. 

2. A FORMAL PROCEDURE 

Suppose that one has a set of input parameters 
I,, 12, . , I,, . _ . , I,,,, collectively represented as I, and 
the corresponding set 0 of output parameters 
O,,O, ,..., 0, ,...) 0,. There is no particular re- 
striction on the relative numbers of these parameters 
m and n ; all that is required is a computationally well 
defined set of functional relationships, the trans- 
formations taking I into 0, viz. 0 = O(l), If one 
makes a series of small deviations or variations 61, in 
the individual 4 one at a time, then the corresponding 
variation SO, of any output parameter 0, is 

+ higher order terms. 

If the variations 62, are small (weak perturbations), 
the higher order terms may he neglected, so the 
relation becomes linear. In order to compute the 
derivatives aO,/iVi, the (m + 1) calculations 

. . . . . . 

O(I,,L...,L,+6J 

are necessary, in which ei is a small variation: 

E,/Z[ - 10-3, and 61, = EiZP 
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Hence all the first-order effects for any input distribu- 
tion of errors, correlated or not, may be found. 

In order to check that the first-order calculations 
are sufficient, one can repeat the procedure with the 
mz sets, such as 

. . . . . . . . 
and 

O(Z1 + c,,zz,Z3+t, ,..-, Z,),etc. 

Then the results from these calculations are com- 
pared with those predicted from the previous set of 
first-order calculations. If the second-order terms 
prove not negligible, then the variances are dependent 
on the initial distribution. In the latter case, the 
procedure outlined in the next section should be 
preferable; otherwise the desired variances have been 
effectively determined according to the first-order 
calculations above. 

3. A MONTECARLO PROCEDURE 

This general numerical approach is essentially of the 
Monte-Carlo type whereby the input parameters are 
subjected to variation, according to a specific statisti- 
cal distribution, with known variances and covar- 
iances taken into account, and then the effect on the 
resulting output parameters is observed. 

We subject each input parameter /, to variation 
according to some distribution function scaled ac- 
cording to the known standard deviation ui of Ip If the 
quantities Zi are independent (correlation coefficients 
between different Zi pairs are sufficiently small to be 
negligible-in practice, magnitudes less than 0.8 may 
be small enough), then the distribution for each Z, is 
also independent, or approximately so; otherwise the 
correlation coefficients are used to retate the variations 
of Z, to other Zk within the set 1. With all the 6. thus 
varied each time, the calculation of 0 from I is carried 
out N times, N being sufficiently large to ensure re- 
producible results, and the sums 

are formed for each 0,. Hence an estimate si of the 
standard deviation of each 0, is simply given by: 

There remains the problem of selection of the.distri- 
bution function. One commonly supposes, in the ab- 
sence of other knowledge, that the input parameters 
are subject to error according to a normal distribution 
function (with mean value c of I,): 

d(Z,) = v 
0,(2x)“2 . 

If use of the Pareto function with either of the given 
values of w generates values of sj that are comparable 
to the set of s, determined by means of the normal 
distribution function, in both cases employing the 
correlation matrix appropriately, then one can have 
confidence that the estimates s, of the standard devi- 
ations of the output parameters 0, are meaningful. 

In that case one should multiply the standard devi- The normal distribution function d, given above, 
ation (rl of Z, by a normally distributed random num- although simple in form, is relatively uneconomical 
ber, and then add the result to L before the com- of computation time, because each call to the gener- 

putation O(I) to render 0. It is of course necessary 
that this random number take both positive and nega- 
tive values; if the distribution of such furnished values 
has a variance other than unity, then each random 
number would have to be scaled accordingly. Al- 
though some computer systems have available such a 
normally distributed random-number generator, 
practically all computers have a generator for random 
(actually pseudo-random) numbers uniformly distrib- 
uted in the range zero to unity. Supposing that such a 
number is provided in response to the call RND, then 
one can easily generate a normal distribution through 
two independent calls of RND in the function 

d,, = [ - 2 log, (RND)]“2 cos [2n (RND)] 

in which log, signifies a natural (not Briggsian) loga- 
rithm and the cosine function takes its argument in 
radians. 

The standard deviation of this distribution d, is 
unity. If all the input parameters Ii + d,p, are thus 
simultaneously varied (Rao, 1973) in the calculation, 
with the correlations taken into account as appropri- 
ate (Hurst & Knop, 1972; Page, 1974), then the output 
parameters 0, each lead to a value of s, that also has 
the significance of a standard deviation, thus fulfilling 
the objective. 

One should however also test the robustness of this 
procedure. For this purpose, another distribution 
function d,, that occasionally provides values quite 
distant from the mean, is useful. The Pareto function 
(Johnson & Katz, 1970), a family characterised by a 
parameter w, 

d, = [wl + (1 - 2w)/(w - I) + (RND)’ m”w)]/wI 

is basically an exponential distribution. Two im- 
portant values of w are 2.2, in which case the other 
quantities should take the values w, = 2 and w2 = 2, 
and IV = 1.2 for which w, = 6 and w2 = 20. The sub- 
sidiary parameters IV,.> are set to values such that the 
distribution has a mean of zero and a variance of 
unity; actually the function with w = 1.2 has an 
undefined standard deviation, but the scaling factor 
w2 = 20 seems to provide a reasonable range of 
effective values of d, (this value of w2 should be 
checked on a particular computer before use). This 
family of Pareto distributions generates only positive 
numbers; given a sign function SGN(x) that takes the 
values SGN(x) = ~ 1 iP x < 0 and SGN(x) = + 1 if 
x > 0, one can premultiply the Pareto distribution by 
a factor SGN(RND - 0.5) to make it double-sided. 
The final resulting distribution is 

d, = SGN(RND ~ O.~)[W, + (1 - Zw)/(w - I) 

+(RND)’ ““‘]/wz_ 
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ator demands formation of two random numbers 
followed by computation of a logarithm, a square 
root, and a cosine. Other generators of random 
numbers according to a normal distribution are more 
complicated in form but more economical of com- 
putation time (Brent, 1974 and references therein). 
Alternatively one can simply use the uniform (or 
rectangular) distribution directly. The standard devi- 
ation of the distribution 

d, = 2(3)“‘(RND - 0.5) 

is unity, and this function can obviously he made 
extremely economical to compute. Tests of this distri- 
bution on a transformation function O(I). that has 
been demonstrated by means of the Pareto function 
to be robust to large perturbations, have shown that 
the estimates si of the uncertainty of the output 
parameters 0 are practically identical to the set of 
true standard deviations s, generated by means of the 
normal distribution d,. 

4. CONCLUSIONS 
Two procedures for the estimation of standard 

deviations of output parameters, related by means of 
arbitrarily complicated numerical or analytic func- 
tions, have been outlined in the previous sections. 
The purpose of each procedure is the same, but the 
amount of programming, additional to the basic 
procedure (that determines the values of the output 
parameters) in order to determine their standard 
deviations, may differ greatly between the two pro- 
cedures 

In the Formal procedure, extensive coding may 
have to be added in order to make the required 
variations of input parameters, one at a time serially 
(or two at a time to check the linearity). On the other 
hand, the Monte-Carlo procedure, that may in any 
case be necessary in pathological cases of non- 
linearity, requires minima1 changes; a loop mech- 
anism must be incorporated in order to run the 
required number N of cycles, and two subroutines 
suffice, one to produce the variations in all the input 
parameters each cycle, and the other to compute the 
sums and to determine From them the variation of the 
output parameters. The formal procedure requires 
fewer cycles through the transformation functions 
O(I), (m + I) or m* in number, compared to the 
Monte-Carlo procedure for which the number N of 
cycles required to yield reproducible results may vary, 
from typically a few hundred for the normal or 
rectangular distributions, or a few thousand for the 
Pareto distributions. (Of course one should use all 
such Monte-Carlo methods in at least duplicate runs, 
starting from a randomised generator seed, in order 

to confirm the reproducibility of the results.) Because 
programmer time may be more expensive than com- 
puting time, for a given problem, the latter disadvan- 
tage of the Monte-Carlo method may prove 
insignificant. Furthermore the Monte-Carlo pro- 
cedure may be easily added to existing programs. 
However, if kept in mind at the design stage, the 
formal procedure can be fairly easily incorporated 
into new programs. 

In summation, the Monte-Carlo procedure con- 
taining the rectangular distribution function provides 
a practical and fairly efficient means of estimating 
error propagated from input parameters of known 
standard deviations through any complicated trans- 
formation process to some collection of output pa- 
rameters. One successful application of this pro- 
cedure has been the determination of the 
Herman-Wallis coefficients in vibration-rotational 
spectroscopy, calculated from wavenumber and in- 
tensity data through potential-energy and dipole- 
moment functions and analytic matrix elements; not 
only arc many of the expressions involved in this 
calculation quite long (up to a hundred terms), but 
also there are matrix inversions (Tipping & Ogilvie, 
1982). In this case the direct analytic method of error 
propagation (Clifford, 1973) would have been at least 
quite cumbersome. 
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