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4 Accurate theoretical expressions for Herman—Wallis factors for the pure rotational, fundamental and first two

! overtone vibration—rotational bands have been derived. These are expressed for arbitrary rotational quantum

‘ numbers in terms of the Dunham potential parameters and the coefficients of a general operator represented
by a power series expansion. The inclusion of higher order corrections in a conmsistent way reduces the
discrepancy reported by previous workers for H; between results obtained numerically and analytically. The
present expressions are of sufficient accuracy to enable one to obtain precise experimental values for the
anisotropy of the polarizability and its derivatives from an analysis of Raman line intensities.

INTRODUCTION

In the ;S)ast few years, several papers have been pub-
lished'™ in which the relative intensities of O and S
branch (AJ = +2) vibration-rotational Raman lines for
diatomic molecules have been analyzed in order to
obtain values for the anisotropy of the polarizability and
its derivatives with respect to internuclear separation.
In order to carry out this analysis, one needs accurate
theoretical expressions (or numerical values™) for the
corresponding polarizability matrix elements, including
the effects of vibration-rotation interaction (Herman—
. Wallis factors®). Analytical results for the dipole
moment matrix elements and Herman-Wallis factors
applicable to infrared spectra have been published,”*
and the purpose of this paper is to indicate how these
results can be generalized to allow for arbitrary rota-
tional selection rules and transition operators.

THEORETICAL

We shall assume that the operator P responsible for the
absorption or scattering of radiation during a transition
can be expanded about the equilibrium internuclear
separation R, in terms of the reduced displacement:

R—R,
' - R. (1)
that is
P(x)=% px' (2)
j=

+ Permanent address: Department of Physics and Astronomy, Uni-
versity of Alabama, University, Alabama 35486, USA.

For the O and S Raman lines, P would correspond to
the anisotropy of the polarizability [oy(R)—a, (R)],
while for other applications it could equally well rep-
resent the isotropic polarizability, a multipole moment
function, etc.

The Herman-Wallis factors are defined by

(W |P(x)|v'T')”

Eil =
T (00| P(x)|v'0)?

(3)
where v and J denote the vibrational and rotational
quantum numbers, respectively. James and Klemperer,’
in an early paper that treated the effects of vibration—
rotation interaction in Raman spectra, kept only the
first two terms in the expansion [Eqn (2)] and calculated
the matrix elements in Eqn(3) using analytical
wavefunctions for a model potential energy function
consisting of a harmonic oscillator term plus the first
three terms in the expansion of the centrifugal potential
#2J(J+1)/2wR?. They presented results for the pure
rotational and fundamental vibrational bands expressed
in terms of the small expansion parameter y=2B./w..
Their results for the fundamental band, however, are
incomplete in that there are additional terms to those
which they reported of order y°. Because of the possibil-
ity of cancellation among the various contributions, the
neglect of these terms can lead to s1gn1ﬁcant discrepan-
cies in some cases, for example, in H,.™>

Recently, we have derived extensive analytical results
for wavefunctions, matrix elements and Herman—Wallis
factors for the Dunham potential'®

Vi(x) =~ychx2(1+ ¥ ajxj) (4)
i=1

by means of computer algebra. Theoretical expressions
for the Herman-Wallis factors for arbitrary rotational
transitions for the pure rotational, fundamental and first
two overtone vibration—rotational bands are presented
in Table 1, in which we have introduced the following
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Table 1. Herman—Wallis factors
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In the previous infrared work,”®'® the rotational

dependence was expressed in terms of the running index:

_B'-B
== ©)

and the Herman—Wallis factors were written in the form

(7

However, one has to be careful in applying the latter
results directly to Raman transitions, for the following
reason. After multiplying out the expressions in Table 1,
the terms proportional to y?> have a rotational depen-
dence characterized by either [(B'—B)/2]* or (B'+B)/2.
For AJ= +1 transitions (R and P branches, respec-
tively), both of these factors can be written as m”, but
this is obviously not true for other rotational selection
rules, as can be seen from the interrelationships among
the rotationa] variables given in Table 2. By including
the y* contributions consmtently, the differences repor-
ted by previous workers® between rcsults obtained
numerically and through analytical formulae’ are greatly
reduced; this is illustrated by sample calculations in the
following section.

FY' =1+Cim+Dim?*+---
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Table 2. Interrelationships among the rotational variables for
different branches

Branch

Rotational
Variable [s] P Q R 5
JH J-2 J-1 J J+1 J+2
m —2J +1 -J 0 J+H1 2J+3
( B’—B) m m 0 m #
—2J +1 ~dJ 0 J+1 2J +3
(m?+3)/4 m? — m? (m?+3)/4

J2+3J +3

2
(%)
2

APPLICATION TO H,

J—-J+1 J2 O+l 4201

In order to compare the accuracy of the present results
with that of results calculated with previously published
analytical expressions’” and by numerical integration,’
it is convenient to consider the ratio of intensities of the
S and O fundamental branch lines originating from the
same initial state. This ratio is proportional to the quan-
tity Gy,, where

Gor(J) = (OJ|P|LT+2)* F§i*?
M 0T|Pl1T -2 Fl12

(this ratio is also useful for analyzing experimental data
as the statistical population factors would cancel).

The Dunham potential constants for H, as reported
by Beckel and Wu'! are listed in Table 3, together with
the expansion coefficients, p;, obtained through a least-
squares fit of the ab initio anisotropic polarizability
function (at 4880 A) calculated by Cheung ef al.® Using
these data and the fundamental F§; expression listed
in Table 1, we obtain the values for G,; presented in
column 4 in Table4. Also shown are the analytical
results obtained by retaining only the lowest order rota-
tional term ([—2v(B'—PB)0,], denoted as ‘first-order’)
and by use of the equation published by James and
Klemperer.®

As can be seen by comparison with the accurate results
obtained via direct numerical integration,’ the inclusion
of the y* terms improves the agreement between the
analytical and numerical results. On the other hand, the
inclusion of only the harmonic second-order terms” (a; =
0 and p,=p;=0) improves the agreement for low J,
but eventually leads to larger discrepancies than without
these corrections. Similar results would be expected for
the overtone bands, and for other molecules.'? However,

(8)

Table 3. Potential® and polarizability” (4880 A)
coefficients for H,

a,=—1.6029 Po=1.91633
a,=1.865 p,=4.93862
a,=-1.999 p,=3.29358
a,=2.05 P2=2.21407
a;=-2.0 v=2.76528 x 102
® Ref. 11.
b Ref. 5.

Table 4. Comparison between analytical and numerical
values for the ratio G,,(J) for H,

Analytical results

James and Present results, Numerical

v First-order® Klemperer® second-order results®
2 0.6204 0.6364 0.6399 0.6482
3 0.5109 0.5285 0.5365 0.5452
4 0.4195 0.4366 0.4509 0.4588
5 0.3428 0.3582 0.3801 0.3862
6 0.2788 0.2912 0.3216 0.3251
7 0.2251 0.2339 0.2733 0.2736
8 0.1803 0.1851 0.2335 0.2302
9 0.1428 0.1437 0.2007 0.1934
10 0.1117 0.1087 0.1735 0.1622

® Ref. 1. First-order indicates that only the leading term proportional
to ¥(B'—B) is retained.

® Ref. 9. The slightly different values reported in Ref.5 arise from
slightly different magnitudes for p, and p, assumed.

°Ref. 5.

since the magnitude of v for H, is larger than for other
typical diatomic molecules, the discrepancies between
the different analytical expressions would be concomi-
tantly smaller. In any event, the accuracy of the Herman~
Wallis expressions given in Table 1 should provide
sufficient accuracy for the theoretical interpretation of
most Raman intensity measurements.
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