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The calculation of upper and lower bounds for the Schr6dinger-equation eigenv/alues from moment recurrence relations is 
reviewed. A previous algorithm originally developed to approach the ground state is shown to apply also to the first excited 
state of parity-invariant systems. Alternative recurrence relations based on the hypervirial theorems are proposed that yield 
bounds for all the states simultaneously. 

The calculation of  upper  and lower bounds  for 
the eigenvalues of the SchriSdinger equation is of 
utmost  importance in quan tum mechanics. Re- 
cently Handy  and Bessis [1] have shown that, in 
some cases, simultaneous upper and lower bounds  
can be obtained from moment  problems. Their 
method is based on the H a n k e l - H a d a m a r d  de- 
terminant  inequalities that express the necessary 
and sufficient conditions for a sequence of num- 
bers /~1,/~2 . . . .  to be the Stieltjes moments  of a 
nonnegative function (say # ( x ) )  [2]. The inequali- 
ties are 

H?>0, H >0, (i) 

where Hk" = det I B I and Bi j  = l~m+i+j_2,  i, j = 
1, 2 . . . . .  k + 1. The Stieltjes moments  are defined 
as 

= f0 x +(x) dx. (2) 

The ground-state wavefunction +(x) (for the 
sake of  simplicity we consider one-dimensional 
problems) of  a bosonic system is nonnegative and 
all its hamburger  moments  

= f x"+(x) dx (3) 

exist. In this case, one can easily prove that H 2m 
> 0 for all m and k [2]. 

If  the system is parity invariant, the odd mo- 
ments vanish and we have a Stieltjes moment  
problem with # ( x )  --- x - 1 / 2 ~ ( x  1/2) [1]. Handy  and 
Bessis [1] applied their method (named H B M  from 
now on) to the ground state of several parity-in- 
variant one-dimensional  bosonic systems. Al- 
though they argued that the H B M  can also be 
applied to excited states or to fermionic problems, 
they did not show any example. However, it can 
be easily proved that the H B M  can be applied, 
almost without modification, to the first excited 
state of  a pari ty-invariant system. In fact, in this 
case we h a v e  a Stieltjes moment  problem with 
q~(x) = g,(x 1/2) provided that the wavefunction is 
chosen so that ~ b ( x ) > 0  for x > 0 .  This can be 
accomplished by setting t~0 > 0 in the moment  
recurrence relation. Since the calculation scheme 
is similar to that in ref. [1], we deem it unneces- 
sary to show an example here. 

Let us now consider a general way of  obtaining 
simple moment  recurrence relations. Suppose that 
~ (x ) ,  where x = (x  t, x 2 . . . . .  xr), is a solution of 
the differential equation 

P(x)A+(x) + Q(x)+(x)=0, (4) 
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where ,A is the laplacian operator  and P and Q 
are polynomial  functions of the coordinates. If we 
multiply eq. (4) by a function q)(x) so that q)4 
and its first derivatives vanish at the boundaries,  
we obtain (after integrating by parts) 

f4 A(pcb)  d x  + fQ 4 dx  = O. (5) 

A proper  choice of  rb(x) t ransforms eq. (5) into a 
moment  recurrence relation. For  example, if q , (x)  
obeys 

A ( p q ) )  + UCb=O, (6) 

where U is a polynomial  function of  the coor- 
dinates, then eq. (5) becomes 

written 

P ( x ) 4 " ( x )  + Q ( x ) 4 ' ( x )  + R ( x ) 4 ( x )  = O. 
IlO) 

where P, Q and R are polynomial  functions of 
the coordinate. It is understood that either - vc < 
x < ~c and 4 ( x )  vanishes at infinity or a < x- < l, 
and both P ( x )  and 4 ( x )  vanish at the end points 
of the interval. 

If eq. (10) is first multiplied by f ( x ) 4 ( x )  and 
then by F(x)%'(~:) and one of the resulting equa- 
tions is subtracted from the other, we obtain (after 
integrating by parts) 

f(fe)"4 2 dx + ':f(FR)'4 dx  

f (Q- w)~4 d x = O .  (7) 

This argument  is a generalization of the proce- 
dure that H a n d y  and Bessis used to avoid the 
missing moments  [1]. Eqs. (6) and (7) are also 
useful in per turbat ion theory [3] and to generate 
the simplest moment  recurrence relations. Let us 
briefly illustrate the latter point  by means of  the 
Schr6dinger equat ion for the anharmonic  oscilla- 
tor 

- - 4 "  q- ( x2 q- ~kX4) 4 = E@. (8) 

The choice q) = x" exp( - c~x 2) yields 

- - n ( n - -  1)~ n 2 + (1 --40¢2)~,,+2q-~k~n+4 

= [ E -  2a(Zn  + 1)] /G.  (9) 

If a = 0, we are led to the four-term recurrence 
relation shown in ref. [1], but a simpler one is 
obtained when c~ = 1 / 2  since the coefficient of 
~ ,  + 2 vanishes. 

Handy  and Bessis [1] suggested that their 
method can be applied to excited states and 
fermionic systems through a proper  analysis of the 
wavefunct ion nodes. We point  out that this would 
be unnecessary if we had a recurrence relation for 
the moments  of 4 2. Such a relation can, in fact, be 
obtained for some one-dimensional  problems by 
means of the hypervirial theorems [4-6]. To see 
this, suppose that the Schr6dinger equation can be 

+ f f R 4  2 d x - ½  f ( f Q ) ' 4  2 d x = O .  (11) 

provided that f i x )  and F ( x )  are related by 

½ ( P F ) ' -  Q F - f P  = 0. (12) 

Upon  choosing f =  x" (n = 0, 1 . . . .  ), F is found 
to be a polynomial  function of the coordinate  and 
eq. (11) becomes a recurrence relation for the 
hamburger  moments  

~,, = f_~cx"4" dx.  (13) 

Therefore, H~ 2" > 0 for all the eigenfunctions since 
42 is positive definite [2]. 

As a general rule, the missing-moment problem 
seems to be more serious in the hypervirial method 
than in HBM. In what follows, we will consider 
two quantum-mechanical  models which, al though 
trivial, are very useful to illustrate the perfor- 
mance of the hypervirial method because the re- 
currence relations are free from missing moments.  

For  the harmonic  oscillator, eq. (11) with P -  
- 1, Q - o, R = x 2 - E and f =  x" - 1 becomes 

is,,+1 = nEIG,__l/(n + 1) 

+ n ( n - 1 ) ( n - 2 ) / 1 , ,  3 / 4 ( n +  1). (14) 

A Stieltjes problem is obtained by writing n = 2p 
+ 1 and ~p instead of l~2p. The inequalities (1) 
with k =  7 yield the bounds  shown in table 1. 
Since all the states are treated simultaneously, the 
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Table 1 
Upper and lower bounds (UB and LB, respectively) for the 
eigenvalues E n = 2n +1 of the harmonic oscillator obtained 
from H7 ° > 0 and H71 > 0. 

n LB UB 

0 0.999980 1.000054 
1 2.99520 3.002514 
2 4.94884 5.131029 

Table 2 
Upper and lower bounds (UB and LB, respectively) for the 
eigenvalues u, = n of the hydrogen atom obtained from H71 > 0. 

n LB UB 

1 0.9784 1.025 
2 1.771 

large-determinant  inequalit ies give rise to m a n y  

energy bounds  that have to be analyzed carefully, 
part icularly those corresponding to the excited 

states. 
The next example is the hydrogen atom. The 

radial part  of the Schrt~dinger equat ion for this 

model can be writ ten (atomic uni ts  are used) 

[ - r 2 3 2 / 3 r 2 + r 2 - 2 u r + l ( l +  l ) ] ~ = O ,  (15) 

where ~b vanishes at r = 0 and  inf ini ty  and  l = 
0, 1 . . . .  is the angular  m o m e n t u m  q u a n t u m  n u m -  
ber. The eigenvalues are u n = n = 1, 2 . . . . .  where 
n is the principal  q u a n t u m  number .  With  a given 
value of 1, the HBM applies to the state with 

pr incipal  q u a n t u m  n u m b e r  n = 1 + 1 which is the 
only one with nodeless radial wavefunction.  On 
the other hand,  the hypervirial method treats all 

the states with the same q u a n t u m  n u m b e r  l 
s imultaneously.  

Eq. (11) with P = - r  2, O ~ 0, and R = l(l + 1) 
.4- r 2 _ 2 ur leads to 

~n+2 = (2n + 5)u l~ ,+J(n  + 3) 

- [1 (1+ 1)(n + 2)/(n + 3) 

- ( n +  l ) ( n +  2)/4]~t, .  (16) 

We briefly consider the s states (1 = 0). Results for 
this model are not  as satisfactory as those for the 
previous one. Most  of the roots of H ° > 0 are 
complex and the real ones do not  give useful 

informat ion.  However, the inequalit ies H2 > 0 lead 
to increasingly tight bounds.  Those for k = 7 are 
shown in table 2. 

Al though present  results are not  striking, it is 
clear that the hypervirial  moment  method pro- 

vides upper  and lower bounds  for all the states of 
one-dimensional  systems, and we deem that it 
may be very useful in checking eigenenergies and  
moments  obta ined  from other approaches. 
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