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A quantitative theory of infrared spectra

by J. F. OGILVIE

Research School of Chemistry, Institute of Advanced Studies,
Australian National University, G.P.O. Box 4,
Canberra, A.C.T. 2601, Australia and Laboratoire d’Infrarouge,
Batiment 350, Université de Paris-Sud, Centre d’Orsay, 91405 Orsay cedex, France

A quantitative treatment of the frequencies and intensities of lines in infrared
spectra of diatomic molecules is outlined, with particular reference to HCI. The
relationship of classical and quantum-mechanical approaches to the analysis of
such spectra and to ideas of molecular structure is discussed.

1. Introduction

Woolley (1976) has questioned the meaning of molecular structure within quantum
mechanics, especially in relation to spectroscopic experiments on isolated molecules
containing a few nuclei and their associated electrons. According to Woolley, if a
description of a given experiment uses molecular eigenstates, then no structural
interpretation is possible. The implicit assumption of microscopic rigidity, inherent in
classical ideas about molecular structure but apparently inconsistent with a general
quantum-mechanical theory of molecular eigenstates, arises as an asymptotic ap-
proximation in quantum mechanics, and emerges through the transition from
quantum to classical chemistry. However, the idea of a molecular structure is a useful
approximation in chemistry, although there exist molecules for which the idea of a fairly
rigid arrangement in space corresponding to a definite, almost static geometrical array
of nuclei and characterized by bond lengths and interbond angles, is misleading. Some
instances of these exceptions are NH;, PF, Fe(CO)s, XeF, and CoH,, (bullvalene
and isobullvalene). For diatomic molecules however, analogous problems are less
severe (Woolley and Sutcliffe 1977), and we present a quantitative analysis of the
infrared spectra of a diatomic molecule within the Born—Oppenheimer approximation.

The measurement of infrared spectra began about 1890. For the particular gaseous
substance HCI Angstrom and Palmaer (1893) detected the first absorption line, within
the transparency range of the materials then available as windows on sample cells, to
have a frequency ~ 87 x 10'* Hz. Thousands of lines in such rotational or vibrational
bands have now been measured from the millimetre-wave region to the green in the
visible spectrum, for various isotopic combinations of *H, *H or *H with **Cl or AOLTE
the gaseous sample is sufficiently rare that intermolecular effects are negligible, then
the principal features of each absorption line that one may attribute to molecular
properties are the frequency at which absorption is a maximum and the integrated
intensity. These two features must be accounted for within any satisfactory theoretical
treatment of the observable phenomena. According to the quantum theory, the
transition energies correspond to the energy separations of the molecular quantum
states, and the transition intensities are related to matrix elements connecting the
different states.
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198 J. F. Ogilvie

2. The quantitative theory
To derive the energies of the quantized molecular states, we first assume the Born—
Oppenheimer separation of electronic and nuclear motions, and then attribute the
observed transitions to be related to the vibrational and rotational motions of the
nuclei in the field of the electrons. We have determined the vibrational energies E, from
the quantization condition according to the WKBJ method (Ogilvie and Tipping
1983):

% §[Ev— V(x)]2dx+ Y (?)J é;yj{x, E)dx=h{v+1/2)
e §=3

in which v is the vibrational quantum number, k is Planck’s constant, x is a reduced
interatomic separation, x=(R —R,)/R,, ¥(x) is the interatomic Born—Oppenheimer
potential energy, and the y; are defined by a recurrence formula (Ogilvie and Tipping
1983). Noting the proportionality of the integrand in the first WKB integral to a
component of linear momentum, p,,

px~LE,—V(x)]'*2M)"

we are reminded of the action integral

ﬁ;pdr=nh

arising in the elaboration by Wilson and Sommerfeld of Bohr’s theory of the one-
electron atom. The sum of higher WKB integrals of y; is obviously an asymptotic series
in powers of the reduced Planck constant #. For a potential-energy function W(x),
Dunham (1932) used the form

V(x)=agx*(1+ Y a;x’)
i=1
that clearly has a precursor in the work of Kratzer (1920). An alternative function
(Ogilvie 1981)

V(2)=coz’(1+ }, c;z))

in terms of the argument z=2(R — R,)/(R + R,) places the united-atom and separated-
atom limits on an equivalent basis; consequently this series does not suffer from the
restricted range of convergence of Dunham’s. By means of computer algebra (Ogilvie
1982), the vibrational energies E, may be found as analytic functions of the masses M
of the separated atoms, the Hooke’s law coefficient k., the equilibrium internuclear
separation R, and the potential-energy coefficients a; or c;, j>0. Following Dunham
(1932), the rotational effects may formally included in terms of §=J(J + 1), J being the
quantum number for angular momentum, and B, the equilibrium rotational
parameter:

Vix), BB =y *x*(1+ 3. apc))+Bi(1+x)?

Here v is the limiting ratio 2B,/w, of rotational and vibrational transition intervals,
lying within the range 10 *<9<2x 1072 for known diatomic molecules. Thus the
vibration-rotational energies E,; in terms of M, K., R, and q; or ¢; have been found

N — | g———
e By, ok — ——— . c— s

—_——

-

RO S —
.

L

— e, Y e

-

expli
and
WK
Rayl
the a
1974

18 use
no m
follor
coeff]
integ
Born
REO
ation
T
matri
Born
series

Then
eleme

The ki
rotati
wavel
appr¢
expre
inten!
Writte

in wh
this n
{v|M!
dipoli
outsig
repret




ies
x),

on

als,
the
nd

Quantitative theory of infrared spectra 199

explicitly up to a,, or ¢y, in the leading terms (resulting from the first WK B integral)
and up to a;, or ¢, in the correction terms. Although we have used the quasi-classical
WKBIJ procedure in order to produce these expressions, those obtained through
Rayleigh-Schrodinger perturbation theory are exactly the same (Bouanich 1978). For

the actual fitting of frequencies of vibration-rotational transitions, the form (Ross et al.
1974)

E,= Z Zo Ukt(kgoa REOa a; or Cj)[# - 1"2(1’4' ]fz}]k

k=01

X[ I+ 14m Az‘+Ai‘ + ...
¢ Ma Mb

is useful; the coefficients U,, that result from only the first WKB integral have formally
no mass dependence, but the reduced mass u=M,M,/(M,+ M,) does appear in the
following two factors. The final factor takes account of various effects; specifically the
coefficients A};® of the ratio m /M of electronic and atomic masses include other WK B
integrals, adiabatic and non-adiabatic effects resulting from the breakdown of the
Born-Oppenheimer approximation, relativistic effects, etc. The parameters k3¢ and
REC take values with which predictions from (so-called) ab initio quantum comput-
ations should strictly be compared.

The intensities of vibration-rotational lines are proportional to the squares of the
matrix elements, |{vJ|M®|vJ"|?, of the electric dipole-moment function M¢, Within the
Born-Oppenheimer separation, we write the dipole-moment function as a power
series:

Mix)= Y M
Jj=0

Then the matrix elements of the dipole moment may be reduced to sums of matrix
elements of powers of x:

QIIM Ty =Y MCuJ|xi|'d"
i=o0

The latter have been analytically derived from the energies E, , through vibrational and
rotational wavefunctions as a convenient computational procedure, although these
wavefunctions should be regarded as artefacts of the particular computational
approach. Vibration—rotational interaction results in effects on line intensities that are
expressed in the Herman—Wallis (1955) factor FZ, a ratio essentially related to the
intensity of a particular line and the intensity of the entire band. This factor may be
written as a power series,

(B =B\ _ KvJIM(x)[o'd ")) (B —B J{F—BY
F? = =14+C){—— | +D¢(—— ) +...,
: ( 2 )T~ ez )T
in which the coefficient C' contains a linear dependence upon the coefficients M. By
this means one can determine the signs of the electric dipole-moment matrix elements
{v|M*|v") of which the band intensities are proportional to the square. The form of the
dipole-moment function as a power series possesses the familiar defect of diverging

outside the range of x in which it is defined from experimental data. An alternative
representation as a Padé function,

Me(x)=Mj(x+1)3/(1 + i e;x),
I
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incorporates the behaviour appropriate at the limits of the united atom, M(x)oc R> as

R—0, and of the separate atoms, M(x)ocR"™ 4 35 R— oo, for HCL
The values of parameters thus sufficing to define the frequencies (Coxon and Ogilvie

1982) and intensities (Ogilvie and Tipping 1985) of the vibration-rotational transitions

of HCl in the range 0<v<7 are given in the table as an instance of the successful
application of the theory.

Potential-energy, dipole-monent and other molecular parameters of HCL

j ¢ M$/107*°Cm e;
0 (2111393x107+56)m™! 364729 +0:0025
1 —1:3633725+35x10°° 402071 £0-130 189762 +0:036
2 0-865517 +0-00020 01282 +0-193 0-87296 +0-095
3 —0:473118 +0-0014 — 49641 +0-327 1-3321 017
4 0-08959 + 0-0106 —32949 +0-50 1-9871 +0-30
5 0-15645 +0-044 —21598 4063 12573+ 049
6 —0-6061+0-17 —31555+077 31344+ 074
i —0:375+069 0-070+1-7 2:5470+12
8 126422

RBO—(1-2746084 x 10~ 1°+3:5 x 107 '¢)m AE | =0-1320+0-0007

AY | = —0-06382+ 000088 ASl = —0250+0-017

ASl,=0-1280+0:016 AT =0462+0019

A¥ (= —0-3824+0-017 AY , =074 +004

According to Primas (1981), molecular structure is a classical concept and should be
represented by classical observables. It is useful to compare this quantum approach toa
purely classical treatment. We note that the energy coefficients Y;, in the term-value

equation (Dunham 1932)
E,= Z Z Yo+ 1/25(J*+J)

k=0 1=0
are sums of terms in powers of y=2B./w,:
Yu=9"(.-- ;.. )Y (. Gaae )+

of which the first term is proportional to Uy, Analogously the vibrational matrix
elements of x/ (Tipping and Ogilvie 1976):

oy =y 85 ) F YT g )
and the Herman—Wallis coefficients (Tipping and Ogilvie 1982):

CV=y(..apM;..)+7(..ap Mj.. )+ ...

are also written as series in powers of y. Tipping (1972; cf, also Tipping and Ogilvie
1986) has shown that classical mechanics leads to expressions for these three quantities
of which at least the leading terms are identical to those obtained according to the
quantum-mechanical treatment. Thus although the numerical values of parameters
listed for HCI in the table might vary slightly as a result of a classical treatment, the
nature of the results remains qualitatively the same. Numerical trajectory calculations
of the dipole matrix elements (Stine and Noid 1983) lead to similar agreement between
the quasi-classical and quantum approaches.
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Obviously the ideas of two masses oscillating about their mean positions as if
attached through a spring, or rotating about their common centre of mass with a
certain angular velocity, are classical in nature. In quantum mechanics, the spatial
properties of eigenstates characterized by values of a set of quantum numbers
v,J,...are independent of time; for these states, a distribution function of relative
positions of nuclei, or electrons (Ezra and Berry 1982), or both electrons and nuclei
(Thomas 1969), may be defined.

3. Conclusions

(1) Molecular structure is a classical concept, and care is required in its use in the
rigorous quantum-mechanical treatment of eigenstates.

(2) Molecular structure can be introduced into, and imposed upon, quantum-
mechanical treatments via the Born-Oppenheimer approximation.

(3) Molecular structure and vibrational and rotational spectroscopy can be
adequately treated according to classical theory, or equivalently in some cases
by quasi-classical or quantum-mechanical methods within the Born-—
Oppenheimer approximation.

(4) Algebraic methods, with the complicated computations done efficiently and
accurately by machine, produce results with general applicability.
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