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A simple, fast, and accurate method is developed to calculate eigenvalues when the secular 
equation can be written as a (2m + 1 )-term recurrence relation. Several physically interesting 
examples are discussed to show that the present algorithm compares favorably with the most 
efficient ones. 

I. INTRODUCTION 

At present, there exist several more or less general tech­
niques to obtain highly accurate solutions to the stationary 
Schrodinger equation for simple quantum-mechanical mod­
els. Among them we mention the Rayleigh-Ritz method, 1-4 

perturbation theory,5-7 the iterative approach,8,9 the Hill de­
terminant, 10-12 and the gradient method. 13 The main disad­
vantage of the Rayleigh-Ritz method 1-4 is that diagonaliza­
tion of large matrices is time consuming and may be subject 
to cumulation of round-off errors. In this sense, the iterative 
approach8,9 is preferable provided it is convergent. Conver­
gence problems also arise in the case of perturbation theory 
where large-order calculations are very laborious and very 
accurate perturbation coefficients are required.5

-
7 

The method based on the Hill determinant (HDM) is 
simple and has yielded accurate results. 10-12 However, there 
is still some controversy about its general validity, 12.14-16 and 
it has been argued that one should be cautious in applying it 
to a certain type of doubly anharmonic oscillator. 16 Besides, 
since an appropriate scaling factor has to be used for each 
eigenvalue, II this procedure becomes very arduous. 

In view of the above, it is clear that it would be useful to 
have an algorithm as simple as the HDM but free of its draw­
backs. We show in this paper that such a technique can be 
derived from the results obtained by Znojil et al. 17

•
18 The 

method is developed in Sec. II and some useful particular 
cases are explicitly discussed. Our procedure is compared 
with the HDM and the technique developed by Denham 
et al. 19 in Secs. III and IV, respectively. The anharmonic 
oscillator and the linear confining potential model are used 
as test examples in the former and latter cases, respectively. 
Further comments and conclusions are found in Sec. V. 

11_ THE METHOD 

The time-independent Schrodinger equation can always 
be written 

(la) 

where U is defined in terms of two Hermitian operators A 
and B and the eigenvalue E as 

U=A-EB. (lb) 

a) To whom correspondence should be addressed. 

In particular, A = Hand B = I, the Hamiltonian and identi­
ty operators, respectively. 

If I¢') is expanded in terms of an arbitrary basis set 
{U)}, 

00 

I¢') = L CjU>, 
j=O 

then Eq. (1) becomes 
00 

L V,jCj = 0, i = 0,1, ... , 
j=O 

where U;,j = (i! U I j). 

(2) 

(3) 

Successive approaches to the eigenvalues ofEq. (1) can 
be obtained by means of the Rayleigh-Ritz method that con­
sists of finding the roots of the secular determinant 

DN = det U(N) = 0, (4) 

where U~,1) = U;,j, i,j = 0,1, ... , N - 1. As Nincreases, the 
roots of Eq. (4) tend to the exact eigenvalues from above. 
For very large matrices, however, this procedure may suffer 

from numerical instabilities and cumulation of round-off er­
rors. 

When u,',j = 0 for all!i - j! > m, Eq. (3) can be rewrit­
ten as a (2m + 1 )-term recurrence relation: 

m-I 

Cn+ m = -Un--:n
l
+ m L Un,n+;Cn+i> n=O,l, ... , 

;= -m 

(5) 

where it must be understood that c; = 0 if j < O. Since the 
coefficient Cm is given by 

m-l 

Cm = L am,;C;, 
;=0 

(6) 

where am,; = - Uo,JUo,m, and Eq. (5) is linear, we con­
clude that all coefficients Cn can be expressed as linear com­
binations of the first m ones: 

m-I 

Cn = L an,;C;. 
;=0 

It follows immediately that 

an,; = On,; if O..;;n < m , 

(7) 

(8) 

and that the coefficients aj ,; have to obey the recurrence rela­
tion (5): i.e., 
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m-I 

an+m.; = - Un,n+m L Un,n+kan+k,i> 
k= -m 

O"::.i<m -1, n;;;.O. (9) 

Therefore, all of them can be calculated exactly as functions 
ofE. 

As discussed before, the Rayleigh-Ritz method consists 
of truncating the secular equation at (say) UN-I,N-I [cf. 
Eq. (4) ], and it is therefore equivalent to the boundary con­
dition 

CN+j = 0, l<:j<.m, (10) 

that leads to the following set of homogeneous linear equa­
tions: 

m-I 

L aN+j,;C; = 0, 1<:j<.m. (11 ) 
;=0 

Clearly, the only E values leading to nontrivial solutions are 
the roots of 

detM=O, (12) 

where M;.j = aN+j,;, 1<:j<.m, O<.i <m. In this way, the 
eigenvalue problem reduces to calculating the roots of an 
m X m determinant disregarding the number of basis vectors 
taken into account in the representation of I tfJ) [Eq. (2) ]. In 
other words, we can carry out very accurate calculations 
avoiding the use of large matrices. 

It can be easily shown from Eqs. (8) and (9) that the 
coefficients am,; are given by 

an + m,; = (-l)n+I(Uo,mUI,m,,,Un ... +m)-ldetQ~;~I' 
(13a) 

where 

C 
Uo,m 0 0 .. · 

U.m+.J 
Q(i) _ Ut .; UI.m Ut.m+t 0··· 

n+1 - ... 

Un.; U .. ,m U ... m +t 

(13b) 

Although this result, which was obtained previously by Zno­
jil l7 in a different way, is not necessary for our present pur­
poses, we show it here for the sake of completeness. 

It is worthwhile to notice the way the wave function is 
approached. On introducing Eq. (7) into the expression for 
the Rayleigh-Ritz wave function 

N-I 

ItfJ(N» = 2: Cn In) (14) 
n=O 

and interchanging the sums we obtain 
m-I 

It/J'N» = 2: C;!i'N» , (15a) 
;=0 

where 
N-t 

li(N» = L an.; In) . (15b) 
n=O 

In other words, this procedure, called the zero-coefficient 
method (ZCM), allows the wave function to be expanded as 
a linear combination of m nonorthogonal functions. Both 
these functions and the expansion coefficients are improved 

as N increases, tending to the exact solutions of the Schro­
dinger equation because the Rayleigh-Ritz method is con­
vergent. 

In order to show that the present algorithm is simple 
and easy to use, let us consider two particular cases. When 
m = 1, we have a three-term recurrence relation that can be 
written more simply as 

F;C;_t + G;C; + F;+ t C;+ t = 0, i = 0,1, ... , (16) 

where Fo = 0, F; = U;,;_I U>O), and G; = U;.; (i;;;.0). In 
this case, all the coefficients C; are proportional to Co (that 
can be arbitrarily chosen equal to unity), and the condition 
CN = 0 suffices to calculate the Rayleigh-Ritz eigenvalues. 
In fact, a straightforward algebraic manipulation shows that 

Cn = (-1)n(F1F2 .. ·F .. )-IDn · (17) 

Obviously, the condition CN = 0 is equivalent to the Ray­
leigh-Ritz one DN = O. Upon substituting, Eq. (17) into 
Eq. (16), we obtain a well known determinant recurrence 
relation20

: 

Dn+t = BnDn -A~Dn_l' (18) 

Let us now write the five-term recurrence relation expli­
citly because it is used in the following sections. When 
m = 2, we have 

Cj+2 = - UD·~2(Uj.j+ICj+1 + ~.jCj + ~.j-I~-t 
+ Ui.i-2Cj-2)' j = 0,1,.... (19) 

If Co is set equal to unity all the remaining coefficients can be 
written 

Cj = aj + bjCt , (20) 

where aj and bj obey Eq. (19). Since ao = b l = 1 and 
a l = bo = 0, we can calculate all the coefficients aj (E) and 
bj (E). The Rayleigh-Ritz eigenvalues are finally obtained 
from the roots of [cf. Eq. (12)] 

(21) 

that comes from CN + I = CN + 2 = O. 
When applying the HDM to the generalized anhar­

monic oscillator (V = oix2 + f.,tX3 + AX4
), two unknowns 

arise, namely the energy E and the coefficient CI (Co can 
arbitrarily be chosen equal to unity). Therefore, the roots of 
two successive determinants are required to determine both 
E and C I' This can be achieved quite simply through the 
procedure developed above. 

The relation between the coefficients Cj and the secular 
determinants Dn is not as simple in this case as in the pre­
vious one. From the general result ( 13), we obtain 

a· = ( - l)j - I (Uo 2 U1 3 ... U. 2' ) - I D (I) t , 
J ' • J - .J J-

bj = (-I)j-t(Uo.2UI,3 .. ·~_2.j)-IDJ'!!1 , 

(22a) 

(22b) 

whereD y> = det QJil. Upon substituting Eq. (22) into Eq. 
(20) and using the condition C N + t = 0, we obtain 

C t = -D}J)ID~), (23a) 

Cj = (_l)j-t [UO.2Ut.3 ... ~_2.jD~)]-1 

X [DJ~!tD~) -DJ'!!tD}J)] . (23b) 

The coefficient C N + 2 can be proved to be proportional to 
D N • 
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The ZCM is more suitable than the HOM for calculat­
ing highly excited states because in the former technique it is 
not necessary to obtain all the coefficients C" (read a",;) 
from Co upwards. In fact, for large enough eigenvalues the 
expansion coefficients ~ are found to have the largest value 
when (say) I;::;;;n and then decrease as In - jl increases. One 
can, therefore, choose a sufficiently large value of k and set 

Cj = 0 if U - n I > k . (24 ) 

In this way, we have [cf. Eq. (5)] 

m-J 

C,,+m_k = - U"~k,,,+m-k I U"-k,,,-k+iC,,_k+i' 
;=0 

(25) 

In other words, all the coefficients Cj (I j - n I <.k) can be 
written as linear combinations of C" _ k, 

C" _ k + J , ... , C" _ k + m _ I . It is convenient to define 

(26) 

and 

Ti.j = U"-k+i,,,-k+j' 0<'i,j<.2k, 

in which case we can write 

(27) 

T - 1 uj+m = - j,j+m 
m-I 

I 
;= -m 

(28) 

and apply the procedure developed before. If the state 
In + k ) is the largest one required to obtain a given accura­
cy, then one needs n + k + 1 states when using the complete 
recurrence relation and only 2k + 1 (n>k is assumed) in 
this last case. 

III. COMPARISON WITH THE METHOD OF THE HILL 
DETERMINANT 

To compare the ZCM and the HOM, we choose an ex­
ample which proves to be easily tractable by both proce­
dures, namely the anharmonic oscillator 

H=p2+X2+AX4, p= -id/dx. (29) 

If the wave function is written 
. 00 

",(x) = exp( - ax2/2) I CjX2i+ u, 

j=O 

(30) 

where v = 0 or 1 for the even or odd states, respectively, the 
expansion coefficients cj are found to obey 

cj+1 =tj-l(qjCj+fjCj_1 +SjCj _ 2 ), j=O,I, ... , 
(31a) 

wherero=so=sl =Oand 

tj = (2j + v + I) (2j + v + 2) , 

qj = a ( 4j + 2v + 1) - E , 

fj = I - a Z
, 

Sj =A. 

(3Ib) 

(3Ic) 

(31d) 

(3Ie) 

Clearly, all the expansion coefficients can be obtained from 
this recurrence relation as functions of the energy E by 
choosing the initial condition Co = 1. 

It follows immediately from Eq. (31) that 12 

cj=(-l)j(totl· .. tj_I)-IDj, j>O. (32) 

Substitution of Eq. (32) into Eq. (31a) leads to a well 
known determinant recurrence relation. 10-12 

When a = 1, Eq. (31) becomes a simple three-term re­
currence relation. However, this choice is not suitable for 
dealing with very large values of A and n. II In order to facili­
tate numerical calculation, it is advisable to factorize the 
asymptotic form of the determinants (or expansion coeffi­
cients) in the recurrence relation 10; too fast an increase (de­
crease) of the determinants (expansion coefficients) is thus 
avoided. 

The secular equation for the anharmonic oscillator us­
ing a scaled harmonic-oscillator basis set can be easily ob­
tained as follows: the change of variables x-a - I/Zx trans­
forms Eq. (29) into 

(33) 

where Ho = p2 + x 2
• Since the eigenvectors In) of Ho 

(Holn) = (2n + 1) In), n = 0,1, ... ) satisfy 

xln) = 2- 1
/
2 [n l

/
2ln -1) + (n + 1)1/2In + 1)], 

(34) 

the calculation of all the matrix elements Hi, j = (ilH I j) is 
straightforward. Some of them are shown below, and the 
remaining ones follow from the matrix symmetry 
Hi,j = Hj,i: 

H",,,_4 =A(4a2)-1 [n(n -1) (n - 2) (n - 3)P/2, 
(35a) 

H n,n-2 = r l [a-I - a +Aa-2 (2n - 1)] [n(n - 1) ]1/2, 
(35b) 

H",,, = 2- I (a- 1 + a) (2n + 1) 

+A(4aZ)-1(6n2 + 6n + 3) . (35c) 

The recurrence relation for the expansion coefficients is 
found to be 

C,,+4 = _H,,-:,,1+4 [H","+ZC"+2 + (Hn,,, -E)C" 

+H",,,_2C,,_2 +H",,,_4C,,_4] . (36) 

The initial conditions Co = 1 (n = 0,2, ... ) or CI = 1 
(n = 1,3, ... ) lead to the even- or odd-parity solutions, re­
spectively. This five-term recurrence relation can be treated 
as discussed in Sec. II. Owing to the fact that it is well be­
haved, no factorization is required. 

The rate of convergence of the procedures outlined 
above depends on the value of the scaling parameter. There 
are many ways of choosing it l-4.6,7,9,l1,IZ but we do not dis­
cuss them here since our aim is to compare the ZCM and the 
HOM. To do this, we select the value a = I that would be 
appropriate for the ground state of the anharmonic oscilla­
tor according to the empirical formula proposed by Banerjee 
et al. II The value of a remains unchanged when computing 
the first excited even eigenvalue, thus proving that the HOM 
is more sensitive than the ZCM to the use of a nonoptimum 
value of the scaling parameter. Owing to this fact, calcula­
tion is simpler when the latter method is applied. 

As shown in Table I, the ZCM converges much more 
quickly than the HOM, particularly for the first excited even 
state, in confirmation of what was stated above. In addition 
to this, the ZCM is more reliable since the Rayliegh-Ritz 
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TABLE I. Energy eigenvalues for the ground and first even excited states of 
H = p2 + x2 + x'. N is the number of terms taken into account in the wave 
function expansion (a = 1). 

N n ZCM HDM 

0 1.394907 1.256238 
6 2 8.937495 6.872 112 

0 1.392566 1.433555 
8 2 8.660 375 18.418945 

0 1.392355 1.392369 
10 2 8.656312 6.844 716 

0 1.392352 1.384125 
12 2 8.655058 9.120729 

0 1.392352 1.398557 
14 2 8.655050 22.273821 

0 1.392352 1.389725 
16 2 8.655050 8.179592 

0 1.392 351 
42 2 8.654388 

0 1.392352 
52 2 8.655045 

0 1.392352 
62 2 8.655058 

0 1.392352 
72 2 8.655051 

0 1.392352 
74 2 8.655050 

eigenvalues are known to be convergent provided a complete 
set of vectors is used in the expansion of the wave function. 
We therefore conclude that the HOM, which is one of the 
most widespread algorithms for calculation of highly accu­
rate eigenvalues, 10-12 may be advantageously replaced by the 
ZCM. 

For the general 2m anharmonic oscillator potential 
2m 

V = L vjx!, v2m >0 
j=2 

(37) 

we obtain a (2m + 1 )-term recurrence relation when using 
the basis set discussed before. Therefore, the general proce­
dure proposed in Sec. II applies to this problem in a straight­
forward manner. 

IV. COMPARISON WITH THE NORM METHOD 

The purpose of this section is twofold. First, we show 
that the method developed by Denham et 01.,19 which is 
called the norm method (NM), can be applied to confining 
potential models. Second, we compare it with the ZCM. 

The NM is based on the well known fact that a solution 
of Eq. (1) is not normalizable unless E equals an eigenvalue. 
Therefore, it stands to reason that the minima of the finite 
sum 

N 

O'N(E) = L ICn 12 (38) 
n=O 

converge towards the actual eigenvalues as N increases. 19 
This assumption has been successfully checked for a number 
of one-dimensional problems finding rapid convergence in 
all cases. 19 

To apply the NM to the confining potential models 

H = ~p2 - (1/r) + A.rv, v = 1,2, ... ,p = - iV, (39) 

we need an appropriate recurrence relation for the expansion 
coefficients Cj • Such a relation can easily be found by writing 
p and rin terms of the three SO(2, 1) generators realized as7,9 

ko =! (arp2 + ria) , 

kl = ~ (arp2 - ria), k2 = r·p - i. (40) 

Thus, the time-independent Schrodinger equation for Eq. 
(39) can be written as in Eq. (1) with 

A = rH = _1_ (ko + k l ) - 1 +A.av+ I(ko _ kl)v+ 1 , 

2a 
(41a) 

B=r=a(ko-k1 ). (41b) 

The matrix elements of U in the basis set of eigenvectors 
of ko follow immediately from 

koln,l) = nln,!) , (42a) 

(42b) 

where 1 is the angular momentum quantum number and 

k~ = ~ [en -I) (n + 1 + 1)]1/2, n>l. (42c) 

It is then clear that the secular equation for the general case 
is a (2v + 3) -term recurrence relation to which the proce­
dure developed in Sec. II applies. 

For the sake of simplicity, we consider explicitly only 
the case v = 1 that leads to the recurrence relation ( 19) with 
(the remaining matrix elements follow from the matrix sym­
metry Uj,j = ~,j) 

(43a) 

Un,n _ 1 = [~ - A.a2(2n - 1) ]k ~ _ 1 + aEk ~ _ 1 , (43b) 

Un,n =A.a2[ (k~)2 + (k~_1)2 + n2] + ~ n - 1- aEn. 

(43c) 

Since Denham et 01.19 showed how to deal with five-term 
recurrence relations [generalization to (2m + 1 )-term ones 
is straightforward] in detail, we do not need to duplicate 
their results here. 

Table II shows that both methods converge very quickly 
to the actual eigenvalues.9 However, the ZCM is preferable 
because of its greater simplicity and more rapid conver­
gence. Besides, when calculating only eigenvalues by means 
of the ZCM, it is not necessary to store all the coefficients Cj 

(as in the case of the NM and the iterative method9) because 
only the last five ones are required in each step. Although the 
iterative method can be programmed very easily and leads to 
highly accurate results,9 we find the ZCM more convenient 
because it does not exhibit convergence problems. 

In order to calculate a large number of accurate eigen­
values, it is advisable to select proper a values. 1-4,6,7,9,11,12 
The choice a = 1 is appropriate enough for our present pur­
pose of comparison of different methods. 

Finally, we point out that the utility ofthese simple ap­
proaches is immediately realized by taking into account the 
large amount of computational work required to carry out a 
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TABLE II. Lowest eigenvalues of H = p2 - (1!r) + r for 1=0 using the 
scaling factor a = 1. N is the number of basis functions taken into account 
in the wave function expansion. 

N n ZCM NM 

0.556794 0.556996 
12 2 2.406402 2.433340 

3 3.715399 3.789631 

1 0.556764 0.556765 
17 2 2.405079 2.406227 

3 3.693682 3.701288 

1 0.556764 0.556764 
22 2 2.405054 2.405095 

3 3.692 906 3.693334 

1 0.556764 0.556764 
27 2 2.405054 2.405054 

3 3.692 880 3.692 894 

1 0.556764 0.556764 
32 2 2.405053 2.405053 

3 3.692879 3.692880 

straightforward Rayleigh-Ritz calculation for the models 
considered in this section.21 

v. CONCLUSIONS 

Due to its simplicity and good behavior, the method 
proposed in this paper appears to be preferable to all the 
other techniques currently used in obtaining accurate solu­
tions to the time-independent Schrodinger equation. 1-13 It is 
particularly suitable for use with small microcomputers and 
even programmable pocket calculators because it does not 

require complicated programs or large machine memory. 
Futhermore, the ZCM can be used to calculate expectation 
values through Killingbeck's procedure. 12,22 
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