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Abstract. Moment recurrence relations are shown to be useful in perturbation calculations. 
General equations are developed and different cases are discussed. The anharmonic 
oscillator and Zeeman effect in hydrogen are used as illustrative examples. 

1. Introduction 

Perturbation theory approaches that do not take into account the eigenfunctions 
explicitly prove to be very useful in calculating large-order Rayleigh-Schrodinger 
coefficients for the eigenvalues. The first method developed by Swenson and Danforth 
(1972) was based on the virial and Hellmann-Feynman theorems and was successfully 
applied to a large number of quantum mechanical models (Fernindez and Castro 
1984a and references therein). A quite general formulation of the procedure was given 
by Fernhdez  and Castro (1984a) who discussed the conditions under which the method 
can be applied. With a slight modification the hypervirial perturbative method is 
particularly useful in dealing with quantum mechanical models with finite boundary 
conditions (Fernindez and Castro 1982 and references therein). As far as we know, 
no other procedure has been successfully applied to such systems. 

Unfortunately, the hypervirial perturbative method cannot be applied to non- 
separable multidimensional problems. However, Fernhdez  and Castro (1984b, 1985) 
have recently developed a perturbation theory without wavefunction for such systems. 
The method based on moment recurrence relations was first applied to the hydrogen 
atom in magnetic and electric fields (Fernindez and Castro 1984b, 1985, Arteca er a1 
1984, Austin 1984) and its application to coupled oscillators was suggested (Fernandez 
and Castro 1985). The importance of the moment recurrence relations had been 
previously noticed by Blankenbecler et a1 (1980) who performed non-perturbative 
eigenvalue calculations. 

A perturbational approach for one- and two-dimensional anharmonic oscillators 
was recently reported by Killingbeck et a1 (1985) and Killingbeck and Jones (1986). 
In the latter case the authors managed to deal with degenerate states by taking into 
account explicitly the appropriate symmetry of the eigenfunctions. 

Although the wide applicability of the moment method has been suggested (Fernan- 
dez and Castro 1984b) we find that there is a lack of a general formulation showing 
its possibilities and limitations. The aim of the present paper is to develop the moment 
perturbation theory (MPT) in a more general way. The main equations are given in 
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5 2 where two different cases are discussed and illustrated by means of the anharmonic 
oscillator. It is shown in § 3 that under certain conditions the moment recurrence 
relation becomes the secular equation leading to a most convenient perturbation 
approach. The Zeeman effect in hydrogen is discussed in § 4  and results for some 
states are shown in $0 5 and 6. Further comments and conclusions are found in § 7. 

2. The moment method 

The moments of a function 9 are defined as (Epstein 1974) ( F l y )  where F is any 
function such that the inner product exists. We are interested in the moments of the 
eigenfunctions of the time-independent Schrodinger equation 

H9=E9. (2.1) 

W\VIHIF) = EWIF) (2.2) 

Clearly, 

for any function F belonging to the domain of the Hamiltonian operator H. 

and eigenfunctions of Ho are available: 
We further assume that H can be written as H = Ho+ AV, where the eigenvalues 

no@, = E!''@,. (2.3) 

Therefore, a set of functions { F,}  ( i  = 1,2,  . . .) exists so that 

HoF, = II,,~F,. 
/ = 1  

If in addition to this it is found that 

(2.4) 

where I, I f >  0, then equation (2.2) with F = F, leads to 
I , + I '  

C hj,A, + A  1 vj,A, -EA,  = 0 (2.6) 
1'1 , = I - !  

where A, = ("IF,}. 
If E and the moments A, are expanded in powers of A :  

(2.7) 

then equation (2.6) becomes a recurrence relation for the perturbation corrections. All 
of them can be calculated provided certain conditions are fulfilled. 

The starting point or initial condition is obtained as follows. According to equation 
(2.4) a linear combination 

m 

can be chosen to be an eigenfunction of Ho: 

Ho@ = E'''@. (2.9) 
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Therefore, equation (2.2) with F = @ yields 

&(VI@) = A(V1 VI@) (2.10) 

where E = E - E"'. 

that h,., = E''' and 
If the functions 6 are linearly independent, it follows from (2.4), (2.8) and (2.9) 

Therefore, all the coefficients C, can be obtained in terms of C, which can be arbitrarily 
chosen. Equation (2.6) can then be written 

i - 1  ; + I '  

hj,iAj + A -2 qiAj - &Ai = (A,,,,, - hi,i)Ai 
J = I  j = i - I  

(2.12) 

which is our main equation. 

expansion (2.7). The result is 
If h,,,, # hi,i when m # i we choose A, = 1 in equation (2.12) and introduce the 

; + I '  \ 

(2.13~1) 

(2.136) 

from which all the perturbation corrections can be obtained because A:'= ~3,,~. We 
can derive a sole equation for the corrections AIp' by introducing (2.13~1) into (2.136). 
This calculation scheme is possible in the case of anharmonic oscillators as shown by 
Killingbeck et a1 (1985) and Killingbeck and Jones (1986). 

When the functions 6 are of hydrogenic type, as in the case of the Zeeman and 
Stark effect in hydrogen, it is found that hi,i = It,,,, for all i and, therefore, we have to 
proceed in a different way (Fernindez and Castro 1984b, 1985). First of all we rewrite 
equation (2.136) as 

Also, the normalisation condition A, = 1 proves to be useless in this case and one has 
to resort to the standard one, namely (VI@) = 1 which, together with equation (2.10), 
leads to 

... 
C,AjP' = tjp,o (2.146) 

j = l  

( 2 . 1 4 ~ )  

It is straightforward to verify that equation (2.14~2) with i = 2,3,  . . . , m + 1 and equation 
(2.146) enable one to calculate AgP', j = 1,2, . . . , m, in terms of perturbation corrections 
of order smaller than p .  Therefore, all the perturbation corrections can be obtained 
from equations (2.14). 



3780 F M Ferna’ndez, J F Ogilvie and R H Tipping 

In  order to exemplify the difference between the two procedures just outlined let 

H = H,+ AX’” v = 2 , 3 , .  . . (2 .15)  

us consider the very simple problem posed by the anharmonic oscillator: 

where Ho= - d 2 / d x 2 + x 2 .  The choice of FN = x N  exp(-x2/2) leads to 

( 2 N  + 1 - E ) A N  - N (  N - I ) A N - ~ +  A A N + Z v = O  (2.16) 

where N = 0, 2, . . . , or N = 1 ,  3 ,  . . . , for the even or odd states, respectively. A straight- 
forward algebraic manipulation shows that (cf equations (2 .13) )  

E i p ) =  - m ( m  - ~)A‘,P!~+A‘,P;;~).  P’O ( 2 . 1 7 ~ )  

(2 .176)  

where E‘’’ = 2 m  + 1 and A?’ = 6,,’. 
When m = O  or 1 both procedures lead to the same equations and to show the 

difference between them we discuss the second excited state m = 2. On substituting 
N = 0 and N = 2 in (2.16) and rearranging the resulting equations, one easily finds (cf 
equation (2 .10))  ( E  - 5 ) (  A. - 2 A 2 )  = A ( A2 - 2A2,+2)  which enables one to choose 2 A 2  - 
A. = 1 (normalisation condition). These equations can be rewritten 

E = 5 + A ( A 2 - 2 A 2 y + z )  ( 2 . 1 8 ~ )  

(2.1 8 b )  

( 2 . 1 8 ~ )  

from which one can obtain E”’, AY’ and A:P’ in terms of perturbation corrections 
of order smaller than p. Finally, if we write E = 5 - t  E in equation (2.16) and make use 
of equation (2 .18a) ,  we obtain 

A N  = 
1 

2 ( N - 2 )  [ N (  N - 1 ) A N  -2  - A A  N +2 + A A N  ( A 2  u + 2  - ‘ 4 2 ”  ) I  N = 4 , 6 , .  . 
( 2 . 1 8 d )  

which enables one to calculate the remaining A‘$). 
In the example given above the first procedure is more convenient because the 

form of the equations is the same for all the states. The second procedure, on the 
other hand, requires that each state be treated separately because it is necessary to 
solve the above-mentioned set of m equations for A:,’ ( j G m )  before proceeding 
further. Unfortunately, in some cases h,,,,, = h,, and one is forced to use the second 
procedure, as shown in § §  4 and 5 .  

We deem it necessary to add that in obtaining the general equations above we have 
assumed that there is only one state with energy E“’ .  Degenerate states can also 
be treated, as discussed by Ferntindez and Castro (1984b)  and Killingbeck and Jones 
(1986) .  

3. The secular equation 

As shown in the previous section the eigenfunctions of Ho play a relevant role in 
obtaining the proper moment recurrence relation. This fact suggests that it may be 
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advantageous to use the recurrence relation for the moments =(“,,I@,), j = 1 , 2 , .  I . 
(where qn is a given eigenfunction of H with eigenvalue E , ) .  Obviously, when doing 
this we are led to the secular equation 

& n , A t , n  = A V , , A , n  (3 .1)  

where = En - E!” and y., = (OJ1 VI@,). For the sake of simplicity the set of eigen- 
functions of Ho is assumed to be orthonormal, in which case the moments become the 
expansion coefficients of in terms of the basis {al}. 

If we are interested in the perturbed energy levels that tend to E r ’  as A + 0, then 
it is advisable to set An,n = 1. Therefore equation (3 .1)  with i = n gives us the following 
expression for the energy: 

(3.2) 

I 

E,, = Ek0’+A c y,nAJ,n.  
J 

This last equation enables us to rewrite (3.1) (for i # n )  as 

(3.3) 

where w ~ , ,  = E r ’ -  E:’’. Finally, the perturbation corrections for the energy and 
moments are found to obey 

( 3 . 4 ~ )  

(3 .4c)  
When v,l = 0, for all ( i  - j /  > J the perturbation corrections can be exactly calculated 

by means of equations (3.4).  However, a careful choice of the zeroth-order eigenfunc- 
tions is required when E r ’  is degenerate. For instance, suppose that E:’’= E‘’’ for 
all i belonging to a set Io of integer numbers. Then it follows immediately from (3.4) 
with p = 1 that 

In other words, from all the linear combinations of eigenfunctions of Ho corresponding 
to E‘’’ we have to select those yielding a diagonal V matrix. This is a well known 
result in perturbation theory. 

The states with non-degenerate first-order corrections can be treated in a straightfor- 
ward manner through equations (3.4). However, if El” = E “ ’  for all i E ZI G I o ,  then 
equations (3 .4)  lead to another well known expression: 

v.Jy,n = E ‘ , Z ’ 8 , 2  n, j e  Z,. (3 .6)  

Vn,i = Ey’8r.n i, n E Io .  (3 .5)  

J C  10 

Higher-order perturbation corrections can be obtained in the same way. 
A more general and convenient formulation of the secular equation approach is 

obtained by using an arbitrary orthonormal basis set {Ii)}. On setting A , ,  = 1 the 
equation for the moments (or expansion coefficients) A,.,, = (“,,/ j) is found to be 

(3.7) 
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where U,,, = ( i l H l j } .  If the non-diagonal part of H is treated as a perturbation, the 
following recurrence relation for the moment perturbation corrections is obtained: 

P - l  
(H,, - H l , l ) A ~ , ~ )  = HJ,,A:,:-') - A"-q-') 1,n H 1 .n  A'" I." (3.9a) 

If' q = o  J # n  

(3.9b) 

(3.9c) 

These equations are handled as shown before and when Hi,j = 0 for all ( i  - j l >  J they 
yield the perturbation corrections exactly. 

This method proves to be very powerful in dealing with one- and two-dimensional 
anharmonic oscillators (Fernindez et al 1984b, 1985b) and central-field models (Fer- 
nandez et al 1985a). In most of the perturbation approaches (see, for example, 
Fernandez et a1 1984a, Killingbeck and Jones 1986 and references therein) the Hamil- 
tonian operator is split in such a way that part of Ho is added to the perturbation. In 
the present case, on the other hand, the diagonal part of the perturbation is contained 
in the unperturbed operator. For this reason the method just sketched seems to be 
preferable in dealing with strongly singular perturbations like that in the anharmonic 
oscillator. 

4. The Zeeman effect in hydrogen 

The general procedures developed in the previous sections are useful in dealing with 
multidimensional problems. For example, the quantum mechanical model 

U,= -+A-l / r  v = $r2 sin2 e (4.1) 
can be treated in different ways that will be briefly discussed here. 

The algebraic method (Ciiek et a1 1980, &ek and Vrscay 1982) seems to be most 
suitable as it provides an appropriate basis set for the secular equation approach 
outlined in 0 3 (Fernindez er a1 1984b, 1985a, b). However, if the perturbation potential 
is more complex, as in the case of the hydrogen-ion molecule (Ciiek and Vrscay 1982, 
Fernandez and Castro 1984b) the method of § 2 is preferable. 

In this and the following sections we show some new results for the Zeeman effect 
in hydrogen obtained through the method of 0 2. To this end, we try the set of functions 
IFM,N) 

(4.2) M 
F M , N  = r sinN 8 cos' 0 exp(imq3 - r /n )  

where M = 0 , 1 ,  . . . ,  N = 0 , 2  , . . . ,  r=0 ,1 ,  m=0,*1,*2 , . . . ,  and n = 1 , 2  , . . . .  The 
moments AM,,, = ( 9 1 F M , N )  are easily found to obey (Fernandez and Castro 1984b, 1985) 

[ ( M  - n + l ) / n I A M - , , ~  = CM.NAM-*,N + + ( N 2 -  ~ ' ) A M - ~ . N - I + & A M , N  - ; ~ A M + Z , N + Z  
(4.3) 

where C M , N  = f [ M ( M + l ) - ( N + t ) ( N + t + l ) ]  and & = E + l / n 2 .  Although this 
expression holds for all the states of the Hamiltonian operator (4.1), each one has to 
be treated separately because we have to use the second procedure of 0 2. 

An alternative recurrence relation is obtained when using 

F,,,, = rNPjM(cos e) exp(im4 - r /n )  (4.4) 
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where P? are the Legendre polynomials, M = Iml and N = 0, 1 , .  . 
calculation is facilitated by the fact that 

sin' OP? = a?P,"_,+ b y P ?  + c?PE2 

where 
M M  a ? = - a ,  a r W l  

c ? = - P ,  @ / + I  

M M  M M  bi'"'=l-a/ P / - i - P /  a/+[ 
M M  

and 

I +  M 
21+ 1 

=- 

l - M + l  
21+1 . PI" = 

. .  

3783 

In this case the 

(4.5) 

( 4 . 6 ~ )  

(4 .6b )  

( 4 . 6 ~ )  

( 4 . 6 d )  

(4 .6e )  

where AN,/ = (YIFN,/). Although both equations (4 .3)  and (4 .7)  are suitable for perturba- 
tion calculations we find the former more convenient for programming and its use will 
be illustrated in the following sections. 

It must be remembered that the Rayleigh-Schrodinger perturbation expansion for 
this model is asymptotic divergent (Avron 1981) and therefore an appropriate resumma- 
tion technique is required to deal with the large-order series (Arteca et al 1984 and 
references therein). 

5. Tightly bound states 

For the sake of simplicity we use the hydrogen atom quantum numbers ( n  = 1,2,  . . . , 
I = 0 , 1 , .  . . , n - 1 ,  and m = -1,  - I +  1 , .  . . , I )  to label the Zeeman states although only 
m is related to an actual constant of the motion. The tightly bound states ( I  = - m  = n - 
1 )  appear to be the most widely studied ones (Gay 1984) and we consider them first. 
It is well known that perturbation theory for non-degenerate levels can be applied to 
these states and, in addition to this, they can be treated in a unified fashion through 
the method of 5 2 because their zeroth-order radial parts have no nodes in 0 < r < cc 
(Fernhdez and Castro 1985). 

&lA,,+l,fl+l, which suggests the normalisation condition = 1 .  To avoid large 
matrices and obtain only one set of equations for all the tightly bound states it is 
convenient to define U = M - n + 1,  U = N - n + 1 and B , ,  = A M , N .  This leads to 

When M = N = n - 1, equation (4.3),  with t = 0 and m = 1 - n, reduces to EA,-,,,-, - - 
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Bu - I .  = ( n I ){ Cu + n - I, c +  n - 1 B u  - 2 .  c 

+;[I?+ 2u(n - 1)1Bu-2~L-2 + $A (B2,2Bu, ,  - Bu+2.1+2)} (5.3) 

where U = 2,3, .  . . and U = 0 ,2 , .  . . , 
corrections is given by 

B?'l,v = (n /u ) (  C u + n - l . v + n - l  

U. The recurrence relation for the perturbation 

+ t[ U' + 2 U ( n - 1 )]  BLq!2,L -?  

( 5 . 4 ~ )  

E ( 4 )  = $92-1), (5.4b) 

In order to obtain E'""' we have to calculate all the elements where O S  q 6 p, 
l < u s 2 + 3 ( p - q )  and u = 0 , 2  , . . . ,  SU. 

Equations (5.4) are suitable for numerical calculation (Arteca et a /  1984, Austin 
1984) even with small microcomputers (Fernandez and Castro 1985). In  this paper 
we show some algebraic results obtained by means of the REDUCE program (version 
3.2). The first five energy perturbation corrections are given below: 

E ' " = n ' ( n + 1 ) / 8  

E'2'  = -n7 (  12n3+39n2+41n + 14)/384 

E'3'  = n ' I (  21 6ns + 1305 n4 + 3 137n' + 3748n' + 2228n + 528)/9216 

E'4'= -n"(112 320n7+ 1038 555n6+4151 305n5+9297 860n4+ 12 597 304n3 

+ 10 314 342n2+4716 468n +926 640)/4423 680 

E'"= nI9(17 625 600n9+225 396 675nB+ 1303 537 775n7+4476 434 750n6 

+ 10 056 564 084n5+ 15 310 072 754n4+ 15 760 955 624n3 

+ 10 545 806 904n2+4144 615 200n +725 587 200)/530 841 600. 

As far as we know they have not been reported before. 

( 5 . 5 ~ )  

(5.5b) 

(5.5c) 

(5.5d) 

( 5 . 5 e )  

6. The 2s state 

From a physical viewpoint the 2s state is not as important as those discussed previously. 
However, since the radial part of the 2s wavefunction exhibits a node it is suitable for 
illustrating how to deal with the second method developed in § 2. 

The appropriate values of n, m and t for the 2s state are easily found to be 2, 0 
and 0, respectively, and the general equation (4.3) becomes 

(6.1) I 2  ( M -  ~ ) A M - ~ , N  = ~ ( C M , N A M - ~ . N  + I N  A M - z , N - ~ +  EAM,N -$AAM+2,N+z). 
When (M, N )  = (0,O) and (1,0),  it yields a pair of equations from which A-l,o can be 
eliminated to obtain - 2Ao.d = ;A (A3,2 - 2A2,2). This suggests the normalisation 
condition 

A1,o = 1 + 2Ao.o 
which leads to 
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Notice that equation (6.2) is equivalent to (vT12s) = 1, where, disregarding the renormali- 
sation factor, 12s) = ( r  - 2 )  e-"2. 

Equation (6.1) with M = 2 and N = 0 and equation (6.2) enable one to write 

AO,O :[I - i h ( A , . z  - 2Az,2)Az.o-ahA,,2]. (6.4) 

Expansion of equations (6.1), (6.3) and (6.4) in powers of A yields the following 
recurrence relation for the moment perturbation corrections: 

A(P-4-I)-AAIP-l) M .  N 8 M + Z , N I ? )  M = 2 , 3  , . . . ,  N = 0 , 2  , . . . ,  s M  (6 .56 )  
E (  P I  = $(A:f;- ' l -  2A'P-I) 2.2 1 p > o .  ( 6 . 5 ~ )  

Inspection of equations (6.5) reveals that it is necessary to calculate AZ,IN for 0 s q s p ,  
2 s M s 3 (  p - q + 1) and N = 0 , 2 ,  , . . , s M in order to obtain E ' p + ' ) .  The procedure 
is straightforward and requires no further discussion. Results have been given earlier 
by Arteca et a1 (1984). 

7. Further comments and conclusions 

The general formulation of the moment method given in this paper is intended to 
reveal the great flexibility of the procedure and establish the necessary conditions for 
its application. It has been argued how to select the most appropriate set of functions 
{F , }  for each problem. In the case of the quantum mechanical oscillators and central- 
field models the eigenfunctions of HO seem to be most convenient because they allow 
the use of the modified operator method (Fernandez et a1 1984b, 1985a, b) which leads 
to accurate perturbation series. However, when the calculation of the matrix elements 
of the perturbation potential is cumbersome, the use of other functions may be 
advantageous. One of the main conclusions of the present paper is that the secular 
equation method can be viewed as a particular case of the MPT. 

As pointed out before, the Zeeman effect in hydrogen may be best treated through 
the secular equation method. However, since its application requires resorting to the 
rather involved S0(4 ,2)  Lie algebra (&ek et aI 1980, &ek and Vrscay 1982) we 
preferred the alternative simpler approach of 0 2 .  Results using the modified operator 
method will be presented elsewhere in a forthcoming paper. 
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