NOTE

DIRECT COMPUTATION OF THE INTENSITY OF AMPLIFIED LINES

M. DANG-NHU¹ and J. F. OGILVIE²

¹Laboratoire d'Infrarouge, Associé au CNRS, Université de Paris-Sud, 91405 Orsay Cédex, France and ²Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan 30043

(Received 24 April 1987)

Abstract—The intensity of an amplified emission line has been developed as a rational polynomial function. For the general case of the Voigt profile and within a defined bidimensional domain, only 18 independent coefficients are required to reproduce the numerical results satisfactorily.

ANALYSIS

In general the equivalent width W is calculated from the linestrength S and the ratio of half the linewidth at half height b_c of the Lorentz profile to the Doppler semi-half width b_d . The formula used for the calculation is

$$W = 2 \int_0^{+\infty} \epsilon \left\{ 1 - \exp[-\epsilon P(\omega - \omega_0) X] \right\} d(\omega - \omega_0), \qquad (1)$$

Table 1. Non-zero values of the coefficients g_{jk} and h_{jk} of the rational polynomial given in Eq. (4).

ť	k	g _{jk}
ı	o	0.4611212423
2	0	-0.1064454513 x 10 ⁻¹
3	0	-0.2287144015 x 10 ⁻³
1	1	0.8706741182
2	1	-0.2882041901 x 10 ⁻¹
3	ı	-0.9999 9 62551 x 10 ⁻⁴
1	2	0.6116429677
2	2	-0.2272764896 x 10 ⁻¹
3	2	0.7754286259 x 10 ⁻⁵
j	k	h _{jk}
0	0	0.100000000 x 10
1	0	0.1239973099
2	0	-0.5848123069 x 10 ⁻²
0	1	0.1839462089 x 10
1	1	0.2117687786 x 10 ⁻¹
2	1	-0.3225888236 x 10 ⁻²
o	2	0.1303610841 x 10
1	2	-0.4801975910 x 10 ⁻¹
o	3	-0.4465392445 x 10 ⁻³
2	3	0.6567998653 x 10 ⁻⁸

Note

where $\epsilon = +1$ for an absorbing medium or -1 for an amplifying medium, $P(\omega - \omega_0)$ is the absorption (or amplification) coefficient at frequency $\omega - \omega_0$, and X is the optical density of the gas. The Voigt line shape is

$$P(\omega - \omega_0) = \frac{aK}{\pi} \int_{-\infty}^{+\infty} \frac{\exp(-t^2)}{a^2 + (\xi - t)^2} dt,$$
 (2)

where $K = (S/b_d) (\ln 2/\pi)^{1/2}$, $a = b_c (\ln 2)^{1/2}/b_d$, and $\xi = (\omega - \omega_0) (\ln 2)^{1/2}/b_d$. Our notation follows that of Jansson and Korb,¹ except that our K corresponds to their P'. The known quantities are W and a and the quantity to be determined is KX or S.

The authors of Ref. 1 have calculated and listed W/b_d as a function of a and KX for absorption. We give data for amplification, for which no numerical results seem to have been published. We also express S and

$$\sigma = \frac{S}{b_d} (\ln 2/\pi)^{1/2} X$$
 (3)

as functions of a and $r = W/b_d$. We have found the following empirical relation:

$$\sigma = \left(\sum_{j=1}^{3} \sum_{k=0}^{2} g_{jk} r^{j} a^{k}\right) / \left(\sum_{j=0}^{2} \sum_{k=0}^{3} h_{jk} r^{j} a^{k}\right).$$
(4)

Equation (4) contains 18 independent parameters and is valid for $0.2 \le r \le 25.0$ and $0.1 \le a \le 10.0$. The parameters g_{jk} and h_{jk} are listed in Table 1.

REFERENCE

1. P. A. Jansson and C. L. Korb, JQSRT 8, 1399 (1958).