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The Analytic Representation of Radial Functions Determined from 
the Spectra of Diatomic Molecules 

J. F. OGILVIE 

Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan 30043 

An alternative approach to the derivation ofthe expressions for the function ZM (to take account 
of effects beyond the vibrational and rotational motions of the nuclei) in the term coefficients of 
diatomic molecules is outlined. Application of the resulting expressions is made to the spin- 
rotational coupling parameter of ‘*C4N in the X22: state and to the electric quadrupolar coupling 
parameter of the 3sCI nucleus in H3’C1. 0 1988 Academic Pr% Inc. 

Recently Bessis et al. (1) proposed an analytic method to enable the determination 
of the radial dependence of certain functions of diatomic molecules in terms of vi- 
bration-rotational spectroscopic parameters. The purpose here is both to demonstrate 
a simpler and improved procedure to accomplish the same objective and to illustrate 
its applications. 

The procedure is essentially an extension of the original method (2). In summary, 
Dunham proposed a general internuclear potential-energy function of a diatomic mol- 
ecule in terms of the reduced internuclear separation x = (R - R&R,, 

V(X) = &X2( 1 + C UjXj). (1) 
J=l 

Then the coefficients Y,,s in the energy term values (in wavenumber units) 

E” = c Y/Go@ + l/V 
k=O 

(2) 

were expressed as a sum of contributions 

Yk,O = Y$ = r(,fl, + Y$ + - - ‘, (3) 

of which the parenthesized numeral in the superscript indicates the order of the integral 
(according to the BKW (3-5) theory) from which the contribution originates. (The 
first-order integral is evaluated directly and leads to the addend 1 of the vibrational 
quantum number V; other integrals of odd order vanish.) In order to take account of 
the rotation of the nuclei about the center of molecular mass, Dunham (2) included 
a centrifugal term in an effective potential-energy function: 

V&(X) = UOX2( 1 + 2 UjX’) + BeJ(J + l)/( 1 + X)2; (4) 
j=l 

by forming the J-dependent potential-energy parameters ai for substitution into 
the Yk,O expressions, he thus derived the vibration-rotational term coefficients Yk/, 
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I> 0. Simply by adding a further term K(x) to the effective potential energy in order 
to take account of effects beyond the vibrational and rotational motions of the nuclei, 

V,,(X) = a0x2(1 + 2 a,~‘) + B,J(J + l)/(l + x)* + 2 k,x’, (5) 
j=l I=0 

one can use a procedure entirely analogous to Dunham’s (2); by this means one can 
generate expressions for the additional coefficients 2~ in the extended equation (6) 
for the term values 

E,J = C C (YM + Zk/)(v + 1/2)%J(J + 1 )I’. (6) 
k=O I=0 

By means of computer algebra (7) we have derived (and checked) the analytic expres- 
sions for Ykl, including all contributions Y$ , Y(i), rlf,’ , and I’$‘, (2k + 1) G 12, 
containing terms in the potential-energy coefficients up to alo, plus Y,,, (aI J and Y,,. 
(u,~)~ and &, (2k + 1) < 9, containing terms up to u7 and kg. (Except for Zfi 
and Zyh, the expressions derived for Z,, are only the contributions Zg’ obtained from 
the zero-order integral of the BKW procedure.) According to the simple and well 
established procedure just outlined, the expressions that have been derived are equiv- 
alent to those termed Y k, and & of Bessis et al. (I) whose procedure was extraordinarily 
and unnecessarily complicated. Also, and perhaps for this reason, the expressions in 
their paper contain many errors (for instance, in Y 3,, , Y4,1, and 22,~). 

The potential-energy function V(x) in the Dunham (2) treatment, also used by 
Bessis et al. (I), suffers from a finite region of convergence, 1x1 G 1 or 0 < R =S 2R,. 
For this reason and because of other useful properties (8) the alternative series rep- 
resentation V(z) (9) in which z = 2(R - R,)/(R + R,), 

V(z) = coz2(1 + c C,“) (7) 
j-l 

is preferable because its range ofconvergence IzI G 2 spans the entire range of molecular 
existence, 0 G R -c co. The expressions for Yki, all orders specified above, (2k + 1) 
< 12, in terms of Cj with j 6 10, as well as the derivatives of Y,, with respect to their 
parameters (useful for purposes of fitting spectra), have already been published (10) 
in machine-readable form (FORTRAN code). Here we introduce a further series rep- 
resentation K(z) corresponding to K(x) in Eq. (5) 

K(z) = C h,z’; 
j=O 

(8) 

the expressions Z,l in terms of c,, h, and y = 23,/o, to be applied in this paper are 
listed in Table I. 

TO demonstrate the application of these results, we consider first the spin-rotational 
interaction in the X2Z state of ‘*C14N (II); although other sets ((12) and references 
therein) of spectroscopic data have since been published for this free radical, these 
data are convenient for the present illustrative purpose. The available values of yV and 
7.1 (1 I) for the vibrational states 0 G II < 3 were separately fitted to quadratic and 
linear, respectively, dependences on (U + 5); the resulting coefficients correspond to 
ZO,O, ZI,O, and &,o and to ZO,, and Z,., , respectively. (The correction term in Zo.o, 
containing the factor y2 is negligible in comparison with experimental error.) The 
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TABLE I 

Expressions for Z,, 

ZO,O = hg + 72 [(- 3/32 c, - 13/32 c: - 

+ 23/16 c,cl + 5/8 cq - 15/16 ca 

+ (l/8 c1 - 3/S c2 + 7/16 cf, hz 

+ (- 7/16 c, - l/S) hS + 3/8 haI 

ZI,O = 7 (h, + hz - 3/2 c,h,) 

22.0 = 72 I(9/8 c, + 3/8 c? - 45/B ct 

- 3/2 c2 - 15/4 cg - 3/8) h, + 

(15/4 cl - 3/2 cl - 3/2 c2) h2 

(3/2 - 15/4 c,) ht + 3/2 h,] 

Zo,, = 7* hl 

Z,,, = 73 [(27/4 CT + 9/2 c, - 6 cq + 

- 9/2 c,hz + 3 haI 

Zo,* = 7' (hg - 2 h, - 3/2 c,h,) 

21/32 cf 

+ l/321 hl 

3/41 h, 

necessary data and parameters are given in Table II, with the values of the coefficients 
hj obtained by applying serially the expressions in Table I. Because Bogey et al. (13) 
have shown that an extra power of reduced mass is necessary for the spin-rotational 
parameter, this factor is here taken into account by the insertion of B, into each 
expression .&in Table I. Because of the experimental error propagated from the input 
data (II), the values obtained for h3 and h4 are not very significant, but serve anyhow 
to indicate the use of the theory. The range of validity of the function K(z) should be 
between the classical turning points for u = 3, namely 1.05 < R/ 1O-1o m < 1.33. 

The second application of this theory is to an experimental quantity not previously 
considered (I), namely the electric quadrupolar coupling parameter qQ of a nucleus 

TABLE II 

Data and Results for the Spin-Rotational Coupling Function of ‘%YN in the X2X State 

/m- ’ 

zo.0 = 0.7441 +z 0.0020 

Z,.. = -0.0039 f 0.0025 

Z2ro = -0.00097 * 0.00062 

Zo,l = (-0.72 f 0.14)~10-~ 

Z,,, = (-0.090 * 0.063)~10-~ 

20.2 = (4.9 f 1.6)x10-*' 

Be 
= 189.9779 

ye 
= 206868.09 

c, = -1.6595 

c:! = 0.9997 

cg = -0.3831 

c., = 0.1266 

ho = 0.003917 f .OOOOlO 

h, = -0.0113 * .0019 

hz = 0.028 I .0053 

h3 = -0.303 f 0.13 

h, = 0.40 f 0.46 
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with spin of magnitude greater than i (in units of h/2a). For this application, the 
available eight data (14, 15) of the electric quadrupolar coupling parameter of the 35C1 
nucleus in ‘H3’C1 and 2H35C1 were fitted directly to the h, parameters, 0 =S j < 4, 
through the expressions for & in Table I, by means of the method of multiple linear 
weighted regression (16). (The other necessary spectroscopic parameters of HCl were 
obtained from our previously published results (17).) As shown in Table III, the deduced 
values of the five parameters hj reproduce the eight input data within an average of 
1.02 experimental standard deviations. (In contrast, Kaiser’s function (14) produces 
an average magnitude of difference between the eight observed and calculated values 
equal to - 150 times the experimental standard deviations.) In this case the correction 
term in 20.0 is significant, and its incorporation into the analysis permits the meaningful 
determination of values of h3 and h4. Because of this correction term, the data of 
2H35C1 fit as well as those of 1H35C1; the invocation (14) of the breakdown of the Born- 
Oppenheimer approximation is superfluous. The range of validity of this function 
K(z) should be between the classical turning points for u = 2, namely 1.08 < R/ lo-r0 
m < 1.58. 

Other experimental data, for instance, the spin-orbital coupling parameter and 
other parameters discussed by Bessis et al. (I), as well as adiabatic and nonadiabatic 
corrections (Z8)-in fact, any applicable data with both vibrational and rotational 

TABLE III 

Data and Results for the Nuclear Quadrupole Coupling Function 
of the % Nucleus in HCI in the X’Z State“ 

/m-l c, = -1.36337 

ho = -0.2228391 t 1.3x10-6 c2 = 0.86552 

h, = -0.30687 f 0.0011 ca = -0.47312 

hz = 0.14713 + 0.0035 cq = 0.08959 

h3 = -1.7117 f 0.015 Be = 1059.34994 m-1 

h4 = 7.6208 * 0.084 Ye 
= 299099.77 m-1 

” J observed= qQ/m-' calculated qQ/m“ 

'H35C1 

0 1 -0.2255521 * 5x10-7 -0.2255524 * 4x10-7 

0 2 -0.2256179 f 5x10-7 -0.2256175 + 4x10-7 

1 1 -0.2310695 f 3x10-6 -0.2310697 * 4x10-7 

2 1 -0.2365240 f 8~10‘~ -0.2365237 f 4x10-7 

?i35Cl 

0 1 -0.2248001 * 3x10-7 -0.2248000 f 4x10-7 

0 2 -0.2248333 * 1~10‘~ -0.2248330 * 4x10-7 

0 3 -0.2248822 f 3x10-7 -0.2248824 + 4x10-7 

1 1 -0.2287686 f 3~10‘~ -0.2287684 f 4x10-7 

a Note that all uncertainties given in this table correspond to -3 stan- 
dard deviations ( 14) or errors. 
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dependence-may be similarly treated to yield a radial dependence of the appropriate 
molecular property, according to the simple method here described and illustrated. A 
further advantage of this approach is the prediction of other values of Z,, not measured; 
for instance, the value of Z,J that appears in Table II was obtained in this way. This 
value of ZO,~ for the spin-rotational coupling expansion of ‘2C’4N is estimated to be 
(4.9 f 1.6) X lo-‘* m-’ for comparison with the experimental value (16 _+ 8) X 10-i’ 
m-’ for the state u = 0; the agreement is only moderate, and possible deficiencies in 
the spectral analysis (II) have already been discussed (12). It should be noted that, 
contrary to the usage of Bessis et al. (I), the factor Be is here omitted in the function 
K(x) or K(z); the incorporation of this quantity would in general produce an incorrect 
mass dependence for isotopic molecules, although it is necessary, and has been in- 
corporated within Z,,, in the analysis of the data for the spin-rotational parameter. 
There however remains within the factor y (proportional to CL-“*) the effect of the 
reduced mass p to bestow the proper mass dependence on isotopic molecules for the 
nuclear quadrupolar or other interaction. 

In conclusion, we have demonstrated that one can conveniently derive expressions 
for Zkl in a simpler and more direct way than that of Bessis et al. (I). Because these 
expressions given in Table I are in terms of the potential-energy coefficients Cj and hj 
rather than of aj and kj, additional conditions can be applied to generate the correct 
long-range (and also short-range) behavior of K(z) toward the limit of the separate 
atoms (and the united atom) (9); thus by comparison with K(x), K(z) is an improved 
representation. There is no necessity to introduce the V! dependence (I) of vibrational 
terms (instead ofthe conventional dependence on (U + f )q, which results in inconsistent 
differences of vibrational terms relative to the Dunham formula in Eq. (2). 
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