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The conditions applicable at the limits of the united atom and the separate atoms may be 
applied to any radial function for diatomic molecules based on the argumentz=2(R - Re)/ 
(R + Re) so as to generate further coefficients in a polynomial representation that thus has the 
correct asymptotic behavior in the approach to these limits. The appropriate conditions are 
given for the potential-energy and dipole-moment functions, and the results are illustrated by 
application to Hel. This type of representation is compared with rational functions. 

I. INTRODUCTION 

Several years ago there was introduced 1 a general inter­
nuclear potential-energy function for diatomic molecules 
that was both flexible enough to be as accurate as desired and 
lacking in any problem due to a finite range of the radius of 
convergence based on the eqUilibrium internuclear separa­
tion Re as the expansion center. Of course such a function is 
based on the approximation of separate treatment of the 
electronic and nuclear motions. The argument 
z=2(R - R. )/(R + R.) of this function is a member of a 
family! of arguments Wmn = (m + n)(R - Re)/ 
(mR + nRe ), but only it treats the two limits, the united 
atom at R = 0 and the separate atoms as R ..... OC), on an equiv­
alent basis, specifically z - 2 and + 2, respectively. The 
potential-energy function V(z) based on this argument has 
the form of a polynomial, to be truncated as necessitated 
either by a particular range of R of interest or by limited data 
to define this function. This form is similar to the potential­
energy function Vex), x= (R - Re )/Re' due to Dunham2 

(following Kratzer3
); in fact the former, V( z) , may be trans­

formed to the latter, Vex), through the substitution 

z = 2 ~ x zx ( 1 _ ~ + :2 _ ~3 + ... ) . 

This substitution can also serve to furnish the relationships 
between the coefficients cj in V(z), 

V(z) = cor (1 + }:"I cjZ
j
) 

and aj in Vex), 

Vex) = ao x
2 (1 + ± ajx j

) 
j=l 

as given t previously. It should be stressed that the expansion 
V(x), and hence its expansion coefficients, are meaningful 
only when Ixl < 1. 

Some relations have also been given I for the purpose of 
generating further coefficients cj , beyond those determined, 
for instance, from spectroscopic data through the known 
dependence4 of the vibration-rotational term coefficients 
Yk1 on these cj and R e , from the knowledge of the limiting 
behavior of V(z) at large distances, R~Re' Thus the appli­
cable condition is that 

[(R ld /dR) PV(r) J -0 as R -- OC) 

for values of the exponent P < n, n being the exponent in the 
leading term of the asymptotic expansionS of V(R) at large 
R, namely 

VCr) = §J e - L CmR - m . 
m;.n 

This expansion is valid in the absence of effects of both elec­
tronic degeneracy and fine structure, and in the case that 
there is negligible distortion, due to interatomic interactions, 
of the distribution of electronic density relative to the sepa­
rate atoms. 

In this report we extend these relations to take into ac­
count the applicability of any known, nonzero values of the 
coefficients Cm and illustrate their application to the mole­
cule He!. We also present a dipole-moment function as a 
polynomial likewise based on the argument z, and show the 
corresponding relations for the limiting behavior of this 
function in the asymptotic approach to both limits z = ± 2. 
In both these cases of potential-energy and dipole-moment 
functions, and by analogy any other function of internuclear 
separation also based on this argument z, we demonstrate 
that this choice of argument in a truncated power series can 
be a useful alternative to rational functions for the accurate, 
economical, and convenient representation of radial proper­
ties of diatomic molecules. 

II. POTENTIAL-ENERGY FUNCTION 

By using the defining relation 

Cm =={( _R2d/dR)m[~e - V(z)]}/m!IIR_", 

one can obtain the set of equations 

Cm = (_l)m+ lcoR:[ 24m + itt 2 j + m+ 2 

X (j + 2)cj Pm (j)/m!] 

in which Pm (j) is a polynomial given in Table I. In this 
equation the summation is over all the n' values of the coeffi­
cients cj (O<Q'<m') typically determined from spectroscopic 
data and the m" = n' - m' values of further coefficients cj 

treated as unknown quantities; the latter are then deter­
mined according to the solution ofthe m" simultaneous lin­
ear equations with the known values of Cm • Furthermore, 
the finite value of V(z), namely the equilibrium binding en-
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TABLE I. Polynomials Pm (j) in the expressions for the coefficients em in 
the potential-energy function at large R. 

PI (j) = 1 
P2(j) =j + 2 
P3(j) =/+4j+~ 
P.(j) = (j+2)(/+4j+6) 
p, (j) = r + 8/ + 29/ + 52j + ~ 
P6 (j) = (j + 2)(r + 8/ + 34/ + 72j + If) 
p, (j) =j6 + 12j' + 155r/2 + 300/ + 709/ + 948j + 22p' 
P8 (j) = (j + 2)(/ + 4j + lO)(r + 8j 3 + 46j2 + 120j + 126) 
P. (j) =j 8 + 16/ + 154j6 + 952j' + 4039j4 + 11704j 3 

+ 22266/ + 25128j + ~ 
pJO(j) = (j + 2)(j' + 16j' + 172j" + 1168j' + 5623r 

+ 18616/ + 41454/ + 55800j + 11lP') 
PII (j) = r + 20r + 525j8/2 + 2280/ + 14448j" 

+ 67200j 5 + 458575j 4/2 + 559420/ + 1850877//2 

+ 930330j +.L11tJ1' 

ergy Pfl e' as R -+ 00 or z = 2, implies the further condition 

Pfl e = 4co (I + .f 1Icj ); 
J=I 

use of this additional condition requires that m N be increased 
by unity. The function V(z) iswellbehavedatthelimitofthe 
united atom, R = 0 or z = - 2; using the condition that 
V(R)-+oo as R .... O, because of the Coulombic repulsion 
between the nuclei, one can derive another equation 

1 + :t: {m!-I [tIl ( - 1)
j
2

j
cj r x( ( -k - 1)} 

=0. 

Because of the nonlinear combination of the coefficients cj , 

this relation is less likely to be useful than those given above. 

III. DIPOLE-MOMENT FUNCTION 

The polynomial function to represent the radial depen­
dence of the electric dipole moment of a diatomic molecule is 
expressed in terms of z as 

l 
M(z) = L ~zj 

j=O 

by analogy with the function due to Dunham6
: 

l 
M(x) = L ~xj. 

j=O 
Then the relations to interconvert the coefficients Pj and 

~ are 

Mo=Po, 
k 

Mk = L ( - 1)k- j (k - 1)!2 j - kp/ 
j=1 

[(k-j)!(j-l)!] , 

and 

k 

Pk = L (k - 1)!2j-k~/ 
j= I 

[(k-j)!(j-I)!], k>O. 

This functionM(z) is potentially useful to represent the di­
pole moment because certain limiting conditions can be ap­
plied to M(z) through sums of the coefficients Pj' entirely 
analogous to those above for the potential-energy function. 
For a neutral diatomic molecule that dissociates into neutral 
atoms, the common behavior of ground electronic states of 
neutral molecules, these conditions? are: (i) M(R) = 0 at 
R=O and R-+oo; (ii) M(R)-+O according to R-n as 
R -+ 00, the value of n depending on the angular momenta of 
the states of the separate atoms8

; (iii) M(R) -+0 according 
to Rm as R -+0, the value depending on the angular momen­
tum of the state of the united atom. 8 

According to the second criterion, the following condi­
tions are obtained for the coefficients C k in the expansion 

M(R) = L CkR -k, 
k=O 

Co = L 2j~ (= 0) , 
j=O 

C I = L - 2j+l~Re' 
j= I 

C2 = L 2H 2fPj R:12!, 
j=1 

C3 = L - 2j +](/ + !>~R ;/3!, 
j=1 

C4 = L 2H ''l(/ + 2)Pj R :/4!, 
j=1 

Cs = L - 2H :;(r + S/ + ~)PjR ;/S!, 
J=I 

C6 = L 2J+6j2(j4+ 1O/+¥)PjR~/6!, 
j=1 

C? = L - 2j+j(r + 3Sj4/2 + 49/ + ~)PjR ~/7!. 
j= I 

Similarly, according to the third criterion, the following con­
ditions are obtained for the coefficients C Ie in the expansion 

M(R) = L C "R k , 
k=O 

Co = L ( - 2) jPj (= 0) , 
j=O 

C; = L (-2) Hl~/Re' 
j=1 

C~ = L ( - 2) H2/~/(2!R;) , 
j=1 

Ci = L (-2) H](/+!)P/(3!R;), 
j=1 

C .. = L ( - 2) H"l(/ + 2)~/(4!R:) , 
j=1 

C; = L (-2) H:;(j4+S/+~)~/(S!R;). 
j=1 
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In these equations for Ck and Cit, the summations are over 
the n' = n" + m' + mil + 3 coefficients Pj of which those 
numbering n" + 1 with 0" j"n", typically determined from 
the Stark effect in microwave spectra (Po) and from the 
intensities of infrared vibration-rotational transitions (Pj • 

l"j"n"), are treated as known parameters in the set of 
m' + mil + 2 simultaneous linear equations employing 
m" + 1 coefficients Ck , O"k"m", and m' + 1 coefficients 
C", O"k"m'. Generally the nonzero values of the coeffi­
cients C k and C" may be unknown; in that case only the zero 
values would be used. The number of these zero values de­
pends on the angular momenta of the states of the united and 
separate atoms, specifically for a neutral diatotp.ic molecule 
that dissociates into neutral atoms as follows.s If the atomic 
dissociation products each have total (electronic) angular 
momentum of magnitude less than Ii, then the leading term 
in theexpansionofM(z) asR -+ r:t:> is proportional toR -7; in 
all other cases, the corresponding dependence is R - 4. As 
R -+O,there is a dependence on R3 for the united atom in an S 
or P state, but on R S for a D or F state. 

If the diatomic molecule carries a single net electrical 
charge, then the dependence on R in the limit of the united 
atom remains the same. At relatively large distances, R ). R., 
however, the dipole moment increases linearly with distance 
instead of decreasing to zero. The approach to this linear 
dependence is according to a dependence onR - 2. For multi­
ply charged diatomic ions, the appropriate limiting depen­
dences can be easily determined. In all these cases, which 
coefficients C k have zero values can be easily deduced, so the 
appropriate equations above can be selected. 

IV. APPLICATION TO THE POTENTIAL-ENERGY 
FUNCTION OF HCI 

The potential-energy function of the ground electronic 
state ofHCI is well determined from spectroscopic data, up 
to at least half the dissociation limit.9 From these results the 
coefficients cj ,0"j,,8, of the function V(z) are calculable, 
and are listed in Table II. By means ofvarious combinations 
of these cj and the relations given above, one can test the 

TABLE II. Values of the potential-energy coefficients cJ and CJ used in 
generating the extended potential-energy functions, with the values of the 
coefficients in Table III and the curves in Fig. 1. 

Co =2.111 393xl07 m-' 
c, = - 1.363372 5 
c2 = 0.865517 
c3 = - 0.473 118 
c. = 0.089 594 
c, = 0.156 448 
c. = - 0.606 10 
c7 = - 0.375 05 
c. = 1.260 I 
IiJ. 3.7252xlO·m-' 
C. = 1.2x10- s'm' 
C. = 1.2 X 10- 73 m7 

C IO t.2X 10- 93 m9 

Ck = 0,I",k",5 
C7 = C9 = CII 0 

applicability of the theory to HCl. Because the dissociation 
products of the ground electronic state ofHCI are H 2S and 
Cl 2P atoms, the value of the exponent of the leading term in 
the long-range expansion of the potential energy is n = 6; 
thus Ck = 0, 1"k<5. The equilibrium binding energy iP. 
can be estimated from thermodynamic data, 10, more accu­
rately than from present spectroscopic data, but including 
the zero-point energy from spectroscopic data/ to be (in 
wave number units) (3.7252±0.OOll)XI06 m- I

• Al­
though some semiquantitative valuesofC6 and Cg have been 
published, 11 in the results given here the values of C6 , Cg, and 
CIO ' also listed in Table II, were estimated from other experi­
mental and theoretical data; tests with the other values 11 

(although lacking CIO ) showed that the results were insensi­
tive to the values of these parameters within moderate ranges 
of variation. 

In Fig. 1 are plotted the potential-energy functions V(z) 
for three different cases of choices of the coefficients cj ' One 
curve simply uses the set cl' 0<j<8, determined from the 
spectra of various isotopic species in the range of energy up 
to 0.52 fP e' Anothercurveisbasedonco,c1 andc2 from the 
spectra and then a further nine cJ generated from the use of 
fP e and C k' 1" k" 8; a related function from the use of C9 in 
addition produces a curve indistinguishable from this one, 
The third curve uses cj , 0"j<4, from the spectroscopic data 
and 12 further long-range conditions, specifically iP e and 
C k, 1 <k < 11. The values of the potential-energy coefficients 
cj of the functions corresponding to the illustrated curves are 
listed in Table III. For purposes of comparison, another set 
of coefficients cj also appears in Table III; these coefficients 
are determined from Co' PiJ e and only the near-dissociation 
conditions Ck , l"k<l1, but the curve would show a maxi-

O~--~--------T-------~~--'----
2 3 R/Re~ 4 

FIG, 1. Potential-energy curves and vibrational amplitudes of HCI; the dig­
its beside each curve where they are distinct indicate the values of m' and 
m", respectively. 
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TABLE III. Values of the coefficients cj used in generating the potential-energy functions shown in Fig. 1, with 
another set for an R - 6 attraction for comparison. 

j 

o 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
II 
12 
13 
14 
15 
16 

m'=2, m" =9 

2.111393XIO'm- 1 

- 1.363372 5 
0.865517 

- 2.088 83 
5.121 56 

- 6.569 50 
5.03100 

- 2.47619 
0.79760 

-0.16359 
0.01948 

- 0.00103 

m' =4, m" = 11 

2.111393XI0'm- 1 

- 1.363372 5 
0.865517 

- 0.473118 
0.089594 

-7.05948 
33.0799 

- 69.804 7 
89.0256 

-76.5273 
46.5661 

- 20.451 1 
6.4762 

-1.4477 
0.2174 

- 0.019 7 
0.00082 

mum in the potential energy about 40% above the dissocia­
tion limit near R - 2Re • The classical vibrational amplitudes 
of 1 H35Cl determined 12 by means of the RKR procedure are 
also plotted on this figure; the differences between the points 
at the ends of these lines pertaining to a specific isotopic 
species and the corresponding mass-independent potential 
energy represented by the curves are negligible on the scale 
of this figure. Some other combinations of some «9) cj 

from the spectroscopic data and some (between 1 and 12) 
long-range conditions (always including ~ e) produced a 
local maximum in the generated curve in the region 
3.5<R IRe <9, followed by a shallow minimum before the 
proper asymptotic approach to the dissociation limit. In 
some cases, an absolute maximum appeared in the curve in 
the region R < 0.5Re; the curve diverged negatively as R ..... O. 

v. DISCUSSION 

A comparison of two curves in Fig. 1, specifically the 
curve for the function from spectroscopic data alone and 
either other curve embodying some long-range conditions 
indicates the practical utility of the combination of the use of 
the argument z in the potential-energy function and the long­
range conditions. On the other hand, the comparison 
between either curve using the long-range conditions and the 
classical amplitudes demonstrates what is in any case intu­
itively obvious, namely that, even with certain long-range 
conditions applied, the functions cannot be quantitatively 
accurate in the region intermediate between the region near 
Re defined by the spectroscopic data and the really long­
range region (in which, ironically, retarded dispersion 
forces prevail such that the conventional near-dissociation 
approachs requires modification). Nevertheless the latter 
functions are qualitatively accurate, and with the imposition 
of further information could presumably be made more ac­
curate. The long-range conditions incidentally bestow good 
behavior on the short-range portion of the curves; in most 
cases, in which there is no maximum of the curve in the 
region 0 < R < Re, fortuitously the energy reached at R :::::: 0 is 

m' =0, m" = 11 

2.111 393x 107 m- I 

- 4.526 8 
10.1194 

-14.1193 
13.4249 

- 9.05614 
4.40215 

- 1.53775 
0.37765 

- 0.06207 
0.00613 

-0.00028 

approximately what is expected, - 2 X 1012 m - 1, on the ba­
sis of just the Coulombic repulsion between the nuclei (at the 
maximum before nuclear fusion), although generally the ini­
tial approach (R < R. ) to this point is steeper than what the 
RKR turning points indicate. Thus in these cases, the poten­
tial-energy function generated by means of some combina­
tion of the spectroscopic data and the long-range conditions 
is able to provide a qualitatively correct behavior throughout 
the entire range of internuclear separation, and of course 
also quantitatively correct in some region about Re accord­
ing to the spectroscopic data embodied therein. 

It is worthwhile to compare the qualities of these poly­
nomials in the argument z, truncated but including the ef­
fects arising from the application of long-range and short­
range conditions, and rational functions such as Pade 
approximants. The disadvantages of each representation are 
fairly obvious even from its form. The polynomial can be of a 
large order. For instance, the application of 12 long-range 
conditions to extend the nine spectroscopically determined 
coefficients cj generates a polynomial of order 20; in the case 
of the dipole-moment function, the application of only four 
long-range conditions and three short-range conditions, in 
both cases just the number of conditions (for HCl, for in­
stance) with Ck and C Ie having zero values, produces an 
extra seven terms to be added to the eight (Po - P7 ) coeffi­
cients determined spectroscopically so as to generate a poly­
nomial of order 14. Even within the range - 2<z<2, such 
polynomials may in general be expected to have unwanted 
maxima or minima. In contrast, although a rational function 
may be formulated to have the proper long-range and short­
range behaviors, additional unwanted maxima and minima 
may also occur; moreover, a pole in the polynomial in the 
denominator can give catastrophic behavior, even within a 
region of interest. A Pade function might in some cases be 
formulated to yield the correct asymptotic behaviors with­
out permitting a sufficiently large number of parameters to 
be quantitatively accurate within a particular region of inter­
est; however the analogous situation cannot in principle 
arise with the truncated polynomial representations. 
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Beside the potential-energy and dipole-moment func­
tions that have been particularly discussed in this paper, an 
analogous treatment can obviously be applied to any other 
radial function of a diatomic molecule. Specifically, a func­
tion to represent a quantity for, or component of, electric 
polarizability and hyperpolarizability that governs the in­
tensity of transitions in Raman and hyper-Raman scattering 
spectroscopy, the spin-orbit function A (z) of molecules in n 
electronic states, the electric quadrupole function Q(z) of 
molecules having nuclei with spin>li, and functions express­
ing the radial dependence of adiabatic and nonadiabatic cor­
rections may all be amenable to this approach. The poten­
tial-energy function might also be extended to apply to 
various coordinates of polyatomic molecules, as the correct 
asymptotic behavior is likely to produce more accurate re­
sults in molecular dynamics calculations than the extended 
Rydberg function 13 with its exponential approach to the dis­
sociation limit. 
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