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From mostly spectroscopic data determined during the analysis
of the frequencies and intensities of narrow spectral lines, the funda-
mental properties of diatomic molecules have been determined as func-
tions of the internuclear distance expressed in terms of the variable z
representing the reduced internuclear displacement from the equili-
brium internuclear distance, within the Born-Oppenheimer procedure.
Many instances of the determination of such radial functions are
presented, all derived by means of the generally applicable ZkI func-
tions in terms of the potential-energy coefficients cj and the additional
coefficients hj to take account of the various additional properties.

1. INTRODUCTION

Although implicitly practised  by spectroscopists long before 1927, the procedureí by
Born and Oppenheimer in which the separate treatment of the electronic and nuclear
motions was justified according to pioneer quantum mechanics remains the most practical
approach for the description of the properties of individual molecules. According to this
procedure, the properties of the molecules either within a particular quantum state (denoted
by a particular set of quantum numbers or indices) or in transitions between such states can
be related to functions having an explicit dependence on the parameters describing the
instantaneous molecular conformation (or geometric structure specified by the nuclear
coordinates). For a diatomic mo!ecule  there is only one such parameter. the instantaneous
internuclear separation R; thus the properties of such a molecule in its quantum states may
be related to the expectation values or matrix elements of the appropriate radial functions.
applicable in general within a particular electronic state, although other functions are

required to describe the properties encountered in transitions between different electronic

states. The inherent nature of each such function necessitates a complicated representation,
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because the function may in general conform to different limiting types of behaviour within
different ranges of internuclear distance; for instance, in the long-range region, correspon-
ding to the approach to the separate dissociation products, in some cases a behaviour pro-
portional to R to some inverse power is applicable, whereas in the region near the equili-
brium separation R, possibly an exponential dependence on R obtains. Obviously a simple
model to represent such complicated dependence throughout the entire range of molecular
existance  is in general unlikely to be accurate. Therefore a superior strategy is to adopt a
form of representation with which work is relatively easy but which can be as flexible as
required to describe the behaviour of all the types in the various regions of internuclear dis-
tance. Furthermore, to the maximum practicable extent, each radial function should be
independent of the nuclidic masses of isotopic variants of the molecules comprising a
particular chemical species, so that any theoretical calculation, almost of practical necessity
based on the Born-Oppenheimer separation, may be directly related to the radial functions
deduced from experimental observations.

To serve as the argument of such radial functions, a variable has been devised* that
meets the requirement of good behaviour throughout the entire range of molecular ex-
istence, from the united atom (R = 0) to the separate atoms (R + -), and that is employed
in the simplest form of representation, namely a power series, for convenience of use. That
variable is z, defined to be 2 (R - R,)/(R + R,), so that its values at the limits correspon-
ding to the united atom and separate atoms are respectively -2 and +2. Then the general

radial function has the form3

K(Z) = z hj zj
j

with the power series starting and truncated as required by the limited amount of experi-
mental data available to define the function in addition to any further terms derived as a
result of the knowledge of the correct limiting behaviours4.  One particular instance of the
general form is sufficiently important to require a distinct notation; thus for the potential
energy, we have the function*

V(z) = v, + co zz (1 + jzl cj zí)

in which the value of V, , serving to define the basis of the energy scale, is taken as zero for
the ground electronic state, and c,, = a,, in the analogous function for potential energy used

by Dunhamí :

V(x) = a, x2 (1 +j51aj  xj) , x - (R - R,)/Re (3) .

Thus by means of these two basic functions V(z) and K(z) we are able to express, in terms
of the numerical values of their respective coefficients cj and hj, the radial functions that
can be related to essentially any property of the isolated molecules comprising a particular
chemical species.
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Two general approaches have been practised in relation to the determination of the
radial functions of diatomic molecules. One approach has been purely numerical, such as
the RKR method6 for the determination of the potential energy; in this case the results are
obtained directly as a table of values of the function at various values of the internuclear di-
stance. The disadvantages of this approach are that a subsequent fitting operation may be
required for the purpose of interpolation. that a separate type of numerical calculation,
commonly involving quadrature, may be required for the function pertaining to each pro-
perty, and that statistical measures either of the extent of propagation of error from the ex-
perimental data to the final values of the function, or of the sensitivity of those values to
such error, may be difficult to determine (and are commonly though improperly ignored).
In contrast, the analytic approach in the tradition of Kratzer7  and Dunhamí yields directly
an algebraic function for which both analytic and numerical procedures to determine error
propagation may be equally directly and readily applied. Moreover, there have been recent-
ly derived in a basically simple form general relations that permit the determination of the
pertinent coefficients cj and hj according to a convenient and readily applicable procedure
for any molecular property for which both a vibrational and a rotational dependence may

. be determined. In this paper we provide instances of these relations and of the results of
their application to determine the radial functions corresponding to various properties of
diatomic molecules.

II. POTENTIAL ENERGY

The function for the potential energy of a diatomic molecule within a particular
electronic state is of special importance because the relations required to determine many
other radial functions involve not only their intrinsic coefficients hj but also the potential-
energy coefficients cj.

We express the energies (conventionally expressed in wavenumber units) of the vibra-
tion-rotational states within a given electronic state of a particular isotopic variant of a
diatomic molecule in the general form

EtJ = c c (QU;(~+~~)ë~  + Z,)[v+ l/21k [J(J + l)]’
k=O g=O (4)

Here pi is the reduced mass of the isotopic variant that may be considered to be composed
from neutral atoms of types A and B having respectively masses Ma and M,, although the
molecule may possess a net electrical charge Z (a quantity having a sign) in units of the pro-
tonic charge; thus the reduced mass is given by

M, MlJ

yi = Ma + M, +Zm, (5)
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in which me is the electronic (rest) mass (in the same units as Ma and M,, commonly atomic
mass units), and the numerator contains the product of the atomic masses whereas the de-
nominator contains the total mass of the particular molecular species. Formally inde-
pendent of mass, the coefficients U,, are directly related to the potential-energy coefficients
cj, but also depend in general on the harmonic force coefficient ke and the equilibrium in-
ternuclear separation R,. The two special cases U, 1 and U, n each depend on only one of
the latter two quantities; specifically,

U0.1 =  h/(&r* c R:) % B; pi

U ,,. =  e/(2 71 c) = w.j L+-

(6)

(7)

In order to avoid the explicit presence in the expressions for the other coefficients I_Jk  of
the fundamental constants h and c, it is more conventient to express the latter in terms of

Uo,, and U, ,o to various powers; for instance,

(8)

The expressions for the further coefficients Ilk, with increasing values of the subscripts k
and II become progressively more complicated, and eventually exceedingly extensive, func-
tions of the coefficients cj, although the functions remain of a nominally simple form.
However the methodsíy’  of computer algebra have ensured that the expressions are correct,
and have enabled the results to be produced lo in machine-readable form (FORTRAN code);
thereby the spectroscopist is readily able to use these results in the processing of the data
from the measurements of the frequencies and wavenumbers of spectral lines. In the case of
HCl” , the resulting potential-energy function is

V(z)/m-’  = (21113930 * 5600) z* [ 1, + (-1.36332725 f. 0.0000352) z

+ (0.865517 f 0.000201) z2 + (-0.47312 f: 0.00138) z3

+ (0.08959 * 0.0105) z4 + (0.15645 f 0.0440) z5

+ (-0.6061 f 0.171) 26 + . . ] (9)

Because of the use of the particular argument z in this function, further terms may be added
by means of the application of the relevant long-range conditions, and the resulting curves”
depicting the potential energy as a function of R approach smoothly the limiting dissocia-
tion energy with ultimately the correct dependence on R.
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III. OTHERRADIALFUNCTIONSFROMFREQUENCYMEASUREMENTS

For the other radial functions there is a set of general relations between the quantities
Gpin  the equation for the energies of the quantum states and the coefficients cj and hj in
the radial functions V(z) and K(z) respectively. We present here as samples of the larger
collection of expressions already published3 only the following that also include the

quantity ri = 2 BL/ wk of each particular isotopic species:

2OJ = 7; h, (10)

Z 1 .o = r,(h, + hz - 3c, h, /2) (11)

By means of the vibrational and rotational dependence of any particular molecular property
to which these quantities Z, refer, the appropriate values of the coefficients hj may be
determined directly, either after the values of the potential-energy coefficients cj have
already been determined or in a concurrent fitting process.

. Even in the absence of all contributions to the total molecular angular momentum
other than that due to the molecular rotation about the centre of mass, there are always
further contributions to the vibration-rotational energies E, . These contributions arise
from adiabatic effects (due to the finite mass of the nuclei) and nonadiabatic effects (con-
sidered to arise from interactions with other electronic states) both these constituting the
partial breakdown of the Born-Oppenheimer approximationí . as well as relativistic and
radiative effects among possibly others. There are also some purely mechanical effects
beyond those taken into account by means of the parameters U,, related5 to the vibration
and rotation of the nuclei and involving only the same parameters as in the Ukn coefficients,
but including successively greater (negative) powers of the reduced mass, viz pfk+2Q+n)i2
with n = 2, 4, . . . . By means of the knowledge of the values of the coefficients cj gained
from the analysis of the Ukp coefficients, one can calculateî sufficiently accurately the
latter mechanical contributions to the vibration-rotational energies. However, the adiabatic
and nonadiabatic effects, and in practice any others having the same dependence on reduced
mass, lead to the contributions that have conventionally been taken empirically into
account by means of the parameters A$ in the equation12

% = kEo ,c, 'k!?i (k+2Q)'2 [v+ 1/2Jk  [J(J + l)]”

[l + m,(A&/M, +A$/Mb )I (12)

If the diatomic molecule contains two nuclei with the same proton number, then the last
term in the latter equation simplifies to [ 1 + m,Akdpi]  ; this form shows explicitly that the
total power of the reduced mass that is the factor of A, is -(k+2&?+2)/2,  thus exactly equal
to the power of the first term of the series of higher-order mechanical corrections (variously
described13 as second-order BKW corrections Yík2pí)  to which reference is made above. For
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the general diatomic  molecule (with unlike nuclear charges), we define in this case the
coefficients ZkQ to be the sum of contributions Z&and Z& Then the relationship of the

is13latter to the spectral parameters A;:

Z b = U,pp;(k+21)ë2  me AL/M,k!?

-Y$ A;jM, /(A&/Ma  +

and analogously for Z& such that

Ab,/M,) (13)

the contributions from the second-order mechanical
effects Y&’  are apportioned between the two atomic types in the r$o of the terms AîdM,
and ALdMb. The resulting functions that express collectively (and, at present, inextricably)
for l H35 Cl the adiabatic and nonadiabatic effects areI :

KH (Q/B;  = (1.8614 + 0.0074) z + (-5.567 t 0.02) zz

+ (3.428 * 0.28) z3 + (28.22 + 0.54) z4 (14)

KCí(z)/B;  = (-0.1016 f 0.0065) z + (0.304 ? 0.020) z* (15)

The absence of a constant term signifies that these effects are relative to those obtaining at
R, (at which z = 0). Note also that in this case, unlike most other radial functions so far
determined, the given equations (and BL) apply to a particular isotopic variant, specifically
’  H35 Cl. The corresponding relations for the other isotopic variants may however be easily
derived from the same experimental values of the parameters AZ” through the appropriate
atomic masses in the pertinent equations above. (The claim14 by Hadinger et al to have
determined the value of a further coefficient equivalent to h5 for KH (z) of ’  H35C1  is entire-
ly erroneous because no value of the required corresponding parameter A;, , Ar3 or A,&
has been determinedî .)

For electronic states other than ë2,  there may be contributions to the total angular
momentum from the electronic orbital and intrinsic angular momenta, as well as from any
intrinsic nuclear angular momenta. First we consider the electronic effects in order of in-
creasing complexity, and then proceed cursorily to the nuclear effects.

For a *z state there is a contribution h/2 to the total angular momentum from the
electronic spin, Such states conform to Hundís case b of the coupling of the various angular
momenta; in this case the interaction is between the spin and the rotational angular
momenta, of which the coefficient ys measures the extent of the coupling. The variation of
y, with vibrational and rotational quantum provides the correspondence of this property
with the general quantity Z,, The resulting radial function 3 for the CN free radical in the
ground electronic state X 2~ is

K-ë(z) = (0.003917 k 0.000010) + (-0.0113 2 0.019) z
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+ (0.028 2 0.0053) z2 + (-0.303 i 0.13) z3

+ (0.40 t 0.46) z4 (16)

For a molecule with an electronic state denoted by 3C. there is again electronic spin
angular momentum to couple with the rotational angular momentum. but there is a further
interaction between the separate spins of the two unpaired electrons. The vibration-

rotational energies thus contain the parameters h and y, for the spin-spin and the spin-

rotational interactions respectively. In the case of O2 in the ground electronic state X 3~ -,

both vibrational and rotational dependences of these parameters have been determined 1P .

By relating the resulting quantities to the general parameters Zig, we can readily determine
the radial dependences of the corresponding interactions; specifically, for the spin-spin inter-
action,

Kî(z)/m-’  = (198.229 f 0.0027) + (55.56 ?: 0.06) z

+ (39.08 + 0.42) z2 + (647.8 + 9.3) z3 +(2526  * l_ >I) z4 (17)

whereas for the spin-rotational interaction,

K7(~)/10-~ = (-5.821377 + 0.00008) + (-1.67 + 0.35) z

+ (-0.970 * 0.090) z2 (18)

For the 2 electronic states of multiplicity greater than triplet, the corresponding radial de-
dependences can be determined analogously.

Like the 2;1: state, the electronic state ëII  also belongs to Hundís case b, but in this in-
stance there is one unit of net electronic orbital angular momentum instead of net electronic
spin angular momentum. Few if any diatomic molecules have ground electronic states of
this type, and the corresponding excited electronic states are commonly beset by strong per-
turbations arising from interactions with other nearby electronic states leading to the same
dissociation products. However in the case of the A ën  state of both CHí and CD+, it has
proved possible to determine the radial function l7 for the interaction of electronic orbital

and rotational angular momenta. For CHí the resulting function is

Kq(z)/10m6  m = (2.8649 f 0.0022) + (-6.8845 * 0.86) z

+ (11.47 + 3.5) z2 + (-63.78 + 7.9) z3

+ (287 + 87) z4 + (-492 + 300) z5 (19)

with a similar result for CDí. For singlet states of greater orbital angular momentum (such
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as ëA,  ëQ,  .), tht: splittings in the energies of the vibration-rotational states are relatively

s1nal1  by comparison with those for ën  states; for this reason, to be able to determine the
required rotational dependence of the parameters for the interaction of electronic orbital
and rotational angular momenta seems unlikely in such cases until techniques imparting
greatly improved spectral resolution and accuracy can be developed.

For the case of the *n electronic state, interactions between the spin and rotational,
spin and orbital, and orbital and rotational angular momenta exist. Although there are well
documented examples of the vibrational and rotational dependences of several parameters,
the situation is complicated because the quantities pertaining to some nominally distinct
physical properties are strongly correlated and thus physically indeterminate. For insqance,
two such parameters are the rotational dependence of the spin-orbital coupling parameter A
and the vibrational dependence of the spin-rotational parameter y,. However by making the
appropriate measurements for isotopically related species, one can in principle separate
some effects. In the case of OH and OD in the ground electronic state X ëIii,  Amano has
succeeded in distinguishing these effects 18, but also found necessary the neglect of a hyper-
fine doubling term of higher order. By this means, it was possible to determine the values of
parameters corresponding to Z,f for three different phenomena, namely the spin-orbital
interaction and two separate A-doubling effects. The corresponding radial functions19 are,

for the spin-orbital interaction

KA(z)/103m-’  = (-13.90637 + 0.00047) + (-0.398 L 0.14) z

+ (-0.675 + 0.22) zz + (-3.7 f 2.25) z3 + (-9.6 f 4.4) z4 (20)

and for the two A-doubling effects

Kp(z> = (0.0127180 f 7.7 x 10-6) + (-0.026745 + 0.0051) z

+ (0.01781 ? 0.0015) z2 + (-0.024 + 0.04) z3 + (0.349 * 0.36) z4

+ (-1.06 * 0.22) z5 + (-5.75 * 1.8) z6 (21)

K~(z)/IO-~  m = (-1.1062 + 0.0002) + (4.0663 + 0.063) z + (-6.93 + 0.18) z*

+ (8.62 r 0.28) z3 + (-7.46 _+ 0.54) z” + (8.47 f 2.5) z5

+ (-28.6 + 16) z6 (22)

The claim by Bessis et al” to have discovered two different methods so as to determine a
function equivalent to Kî(L)  for the spin-orbital interaction from only the vibrational de-

pendencc  of A (or Z/,o ) has been demonstratedî to be fallacious.

From experiments based on electric resonance spectroscopy of molecular beams. both

-
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the great spectral resolution and the great precision of measurements of frequency in the
radio-frequency region have enabled the acquisition of accurate data related to the effects
of angular momenta of atomic nuclei in molecules and their interactions with rotational
angular momentum. One such interaction is that of the electric quadrupole moment of a
nucleus having spin greater than h/2 with the gradient of the electric field existing within a
polar molecule. The radial function that has been determined 3 for the 35C1 nucleus in
H35C1  and D35C1  is

Kqo (2)/m-’ = (-0.222839 + 1.3 x 10e6 ) + (-0.30687 f 0.0011) z

+ (0.1471 + 0.0035) z2 + (-1.712 * 0.015) z3

+ (7.6208 + 0.084) z4 (23)

Other possible hyperfine interactions include the intrinsic angular momentum of a nucleus
with the molecular rotation, the spin of one nucleus with the spin of the other nucleus in

. both scalar and tensor forms, and even an interaction involving the electric octupolar
moment of a nucleus. Radial functions for some of these interactions have been deter-
mined2’ for the NaBr molecule.

IV. RADIAL FUNCTIONS FROM INTENSITY MEASUREMENTS

In principle, data on which to base radial functions for the molecular electric dipole
moment, magnetic dipole moment and electric quadrupole moment (all due to the distri-
bution of electronic density about the atomic nuclei) may be obtained from measurements
of frequencies of spectral lines under appropriate conditions. In fact, the frequency shifts
due to the Stark effect constitute a useful source of data for the vibrational dependence of
the electric dipole moment. However, the corresponding information about the rotational
dependence has not generally been determined, partly because the effect is relatively small
for linear molecules (for which the Stark effect is quadratic in the intensity of the applied
electric field) and partly because of the inadequacy of the analyses of data from the most
precise measurements. Therefore one must perforce have recourse to data from measure-
ments of spectral intensities, which have commonly been orders of magnitude less precise
than the corresponding frequency measurements. Nevertheless some useful knowledge of
radial functions particularly for the electric dipole moment has been obtained, commonly
from some combination of the precise data from the Stark effect and the less precise inten-
sity data. For HF for instance, such data led to the following radial function22  for the
electric dipole moment of the ground electronic state X ëc+:

Ke(z)/lO-ëî  C m = (6.01344 + 0.00040) + (4.6970 + 0.0015) z

-_.
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+ (2.2537 2 0.0067) z* + (-1.7396 + 0.030) z3

+ (-5.302 * 0.095) z4 + (-10.31 + 0.53) zs + (-7.15 ? 7.0) z6 (24)

Other electric dipole-moment functions have been determined up to the seventh power of z
for HClz3 and the eighth power for HBr24.

.

For diatomic molecules containing identical nuclei under conditions of no significant
intermolecular perturbations, the intensity of the vibration-rotational spectrum in either
absorption or emission must arise from other than the electric dipole moment which is
entirely lacking. For 14N2  in its ground electronic state X ë2s)  a permanent magnetic dipole
moment is also lacking. Thus the first moment that can give rise to the observed absorption
spectrumz is the electric quadrupole moment. Because by virtue of a non-spherical

electronic distribution all diatomic molecules must of necessity have a significant electric
quadrupole moment, this mechanism for the origin of the intensity of the spectrum is
acceptable. Although the available spectral data25 permit one to deduce both the magni-

tude and the sign of hi , the value of the constant term h, is best taken from experimental

measurements26  of the optical birefringence that yield both the sign and the magnitude of
this coefficient. According to the general method 27 for treating the available data, the

resulting function for the electric quadrupole moment of N2 is

KQ(z)/~O-~ëC  m* = (-5.07 f 0.3) + (8.68 f. 0.36) z (25)

For the vibration-rotational spectrum of 1602, the transitions may be due to magnetic
dipole or electric quadrupole effects, but the fine structure proved conclusively that most
observed intensity27 arises from the electric quadrupole contribution. In this case, only the
magnitude of h, can be obtained, but the magnitude and sign of ho are again derived from
measurements of the optical birefringence 26 The resulting radial function for the ground

electronic state X ë2;  of 0, is

KQ(z)/10-40Cmz  = (-1.3 t 0.3) f (16.1 + 2.4) z (26)

For the magnetic dipole moment, measurements of the expectation values in different
vibration-rotational states by means of the Zeeman effect seem to be little practised.  For
the one known instance of this kind of function from experimental data, for O2 in the
ground electronic state X ë2  -, the constant term is derived from the knowledge of the
number of unpaired electrons ind the lack of orbital angular momentum implied by the fact
of the 2 electronic state. From an estimate of the upper limit of the magnetic dipole con-
tribution to the observed vibration-rotational absorption spectrum27, one can thus estimate
the following radial function for the magnetic dipole moment:

Km(z)/10-ì3  J T-’  = (1.85 i: 0.03) + (G9.13 + 1.6) x 1O-3  z (27)

u__ . .._ _ ,: _ ..,
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The relatively small magnitude of the (upper limit of the) coefficient h, implies. in classical
terms. that the molecular magnetic dipole moment is modulated to a very small extent by
the molecular vibration.

V. DISCUSSION AND CONCLUSIONS

.

In the above sections, radial functions of some dozen different types have been
illustrated, all derived either in whole or in part from experimental measurements of spectral
frequencies or intensities. Each given function is applicable to a particular electronic state,
and within a particular range of internuclear distance to which the generating spectral data
pertain; generally the range may be considered to lie between the classical turning points of
the vibrational state having the largest value of the quantum number v in the applicable data
set, and the specific range for each electronic state is invariably stated in the publications to
which reference has been made. However the analytic nature of these functions has made
practicable the designation of an appropriate error uncertainty attached to the value of each
coefficient, and each such quantity has been included explicitly in the stated functions.

Within the Born-Oppenheimer treatmint,  these radial functions are true molecular pro-
perties; their calculation according to any ab initio procedure provides an excellent test of
the accuracy and reliability of such a procedure. For the spectroscopist, these radial func-
tions also represent the final objective of spectral analysis, because they constitute the most
compact form of results-the ultimate achievement in data reduction and the ultimate test
of self consistency of the analysis.

These radial functions have all been derived by fundamentally analytic methods,
according to the expressions of U,, and Z,, of essentially simple form demonstrated in

equations (6)-(8), (10) and (1 1). Because the radial functions are based on the well behaved
variable z, so that asymptotic conditions may be applied at the approaches to the limits of
the united atom and separate atoms, it is possible in principle to generate representations
having at least qualitative significance throughout the entire range of molecular existence.
At present. for some radial functions the limiting behaviours. depending on the nature of
the united or separate atoms-or. more precisely, on the particular states of angular
momentum of these atoms, have been incompletely investigated; the appropriate studies are
in progress, but the methods to generate additional coefficients (by means of the application
of these limiting behaviours) beyond those that may be derived from experimental measure-
ments of frequencies and intensities have already been developed4
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